Discover the most talked about and latest scientific content & concepts.

Concept: Baja California



To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii) and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006). Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacán (1337-2928 km). In addition, three post-nesting females were satellite tracked from Colola beach, Michoacán to their foraging grounds in southern Mexico and Central America (941.3-3020 km). A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum) from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific) clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key areas may have positive consequences on a regional scale.

Concepts: Pacific Ocean, Mexico, Nicaragua, Costa Rica, Leatherback turtle, Sea turtle, Baja California Sur, Baja California


The Baja California peninsula is the second longest, most geographically isolated peninsula on Earth. Its physiography and the presence of many surrounding islands has facilitated studies of the underlying patterns and drivers of genetic structuring for a wide spectrum of organisms. Chaetodipus spinatus is endemic to the region and occurs on 12 associated islands, including 10 in the Gulf of California and two in the Pacific Ocean. This distribution makes it a model species for evaluating natural historical barriers. We test hypotheses associated with the relationship between the range of the species, patterns in other species, and its relationship to Pleistocene-Holocene climatic changes. We analyzed sequence data from mtDNA genes encoding cytochrome b (Cytb) and cytochrome c oxidase subunits I (COI) and III (COIII) in 26 populations including all 12 islands. The matrilineal genealogy, statistical parsimony network and Bayesian skyline plot indicated an origin of C. spinatus in the southern part of the peninsula. Our analyses detected several differences from the common pattern of peninsular animals: no mid-peninsula break exists, Isla Carmen hosts the most divergent population, the population on an ancient southern Midriff island does not differ from peninsular populations, and a mtDNA peninsular discordance occurs near Loreto.

Concepts: Biology, Pacific Ocean, Australia, Mexico, Baja California peninsula, Baja California Sur, Gulf of California, Baja California


Environmental governance is more effective when the scales of ecological processes are well matched with the human institutions charged with managing human-environment interactions. The social-ecological systems (SESs) framework provides guidance on how to assess the social and ecological dimensions that contribute to sustainable resource use and management, but rarely if ever has been operationalized for multiple localities in a spatially explicit, quantitative manner. Here, we use the case of small-scale fisheries in Baja California Sur, Mexico, to identify distinct SES regions and test key aspects of coupled SESs theory. Regions that exhibit greater potential for social-ecological sustainability in one dimension do not necessarily exhibit it in others, highlighting the importance of integrative, coupled system analyses when implementing spatial planning and other ecosystem-based strategies.

Concepts: Scientific method, Dimension, Management, Space, Baja California peninsula, Baja California Sur, Gulf of California, Baja California


Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat-use patterns is especially difficult for remote oceanic species. To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ(15) N) patterns that differentiate distinct ocean regions to create a ‘regional isotope characterization’, analysed the δ(15) N values from annual bone growth layer rings from dead-stranded animals, and then combined the bone and regional isotope data to track individual animal movement patterns over multiple years. We used humeri from juvenile North Pacific loggerhead turtles (Caretta caretta), animals that undergo long migrations across the North Pacific Ocean (NPO), using multiple discrete regions as they develop to adulthood. Typical of many migratory marine species, ontogenetic changes in habitat use throughout their decades-long juvenile stage is poorly understood, but each potential habitat has unique foraging opportunities and spatially explicit natural and anthropogenic threats that could affect key life-history parameters. We found a bimodal size/age distribution in the timing that juveniles underwent an ontogenetic habitat shift from the oceanic central North Pacific (CNP) to the neritic east Pacific region near the Baja California Peninsula (BCP) (42·7 ± 7·2 vs. 68·3 ± 3·4 cm carapace length, 7·5 ± 2·7 vs. 15·6 ± 1·7 years). Important to the survival of this population, these disparate habitats differ considerably in their food availability, energy requirements and threats, and these differences can influence life-history parameters such as growth, survival and future fecundity. This is the first evidence of alternative ontogenetic shifts and habitat-use patterns for juveniles foraging in the eastern NPO. We combine two techniques, skeletochronology and stable isotope analysis, to reconstruct multi-year habitat-use patterns of a remote migratory species, linked to estimated ages and body sizes of individuals, to reveal variable ontogeny during the juvenile life stage that could drive alternate life histories and that has the potential to illuminate the migration patterns for other species with accretionary tissues.

Concepts: United States, New Zealand, Pacific Ocean, Australia, Mexico, Ocean, Baja California Sur, Baja California


Eastern North Pacific gray whales make one of the longest annual migrations of any mammal, traveling from their summer feeding areas in the Bering and Chukchi Seas to their wintering areas in the lagoons of Baja California, Mexico. Although a significant body of knowledge on gray whale biology and behavior exists, little is known about their vocal behavior while migrating. In this study, we used a sparse hydrophone array deployed offshore of central California to investigate how gray whales behave and use sound while migrating. We detected, localized, and tracked whales for one full migration season, a first for gray whales. We verified and localized 10,644 gray whale M3 calls and grouped them into 280 tracks. Results confirm that gray whales are acoustically active while migrating and their swimming and acoustic behavior changes on daily and seasonal time scales. The seasonal timing of the calls verifies the gray whale migration timing determined using other methods such as counts conducted by visual observers. The total number of calls and the percentage of calls that were part of a track changed significantly over both seasonal and daily time scales. An average calling rate of 5.7 calls/whale/day was observed, which is significantly greater than previously reported migration calling rates. We measured a mean speed of 1.6 m/s and quantified heading, direction, and water depth where tracks were located. Mean speed and water depth remained constant between night and day, but these quantities had greater variation at night. Gray whales produce M3 calls with a root mean square source level of 156.9 dB re 1 μPa at 1 m. Quantities describing call characteristics were variable and dependent on site-specific propagation characteristics.

Concepts: Human migration, California, Pacific Ocean, Root mean square, Humpback whale, Whale surfacing behaviour, Baja California, Gray whale


Small-scale fisheries are an important source of food and livelihoods to coastal communities around the world. Understanding the seasonality of fisheries catch and composition is crucial to fisheries management, particularly in the context of changing environmental and socioeconomic conditions. While seasonal variability directly impacts the lives of fishers, most fisheries studies focus on longer-term change. Here we examine seasonal variability in the small-scale fisheries of Baja California Sur, Mexico based on 13 years of government fisheries data. We investigate how four fisheries indicators with direct relevance to ecological resilience-magnitude and variance of landed fish biomass, taxon richness and the proportion of top-trophic-level taxa in total catch-vary within and among years and at multiple spatial scales. We find that these resilience indicators vary both seasonally and spatially. These results highlight the value of finer-scale monitoring and management, particularly for data-poor fisheries.

Concepts: California, Pacific Ocean, Baja California peninsula, Baja California Sur, Gulf of California, Baja California, Municipalities of Mexico, La Paz, Baja California Sur


Policymakers and researchers seek answers to how liberalized drug policies affect people who inject drugs (PWID). In response to concerns about the failing “war on drugs,” Mexico recently implemented drug policy reforms that partially decriminalized possession of small amounts of drugs for personal use while promoting drug treatment. Recognizing important epidemiologic, policy, and socioeconomic differences between the United States–where possession of any psychoactive drugs without a prescription remains illegal–and Mexico–where possession of small quantities for personal use was partially decriminalized, we sought to assess changes over time in knowledge, attitudes, behaviors, and infectious disease profiles among PWID in the adjacent border cities of San Diego, CA, USA, and Tijuana, Baja California, Mexico.

Concepts: Infectious disease, Opioid, California, Pacific Ocean, Psychoactive drug, Recreational drug use, Prohibition, Baja California


Large [moment magnitude (M(w)) ≥ 7] continental earthquakes often generate complex, multifault ruptures linked by enigmatic zones of distributed deformation. Here, we report the collection and results of a high-resolution (≥nine returns per square meter) airborne light detection and ranging (LIDAR) topographic survey of the 2010 M(w) 7.2 El Mayor-Cucapah earthquake that produced a 120-kilometer-long multifault rupture through northernmost Baja California, Mexico. This differential LIDAR survey completely captures an earthquake surface rupture in a sparsely vegetated region with pre-earthquake lower-resolution (5-meter-pixel) LIDAR data. The postevent survey reveals numerous surface ruptures, including previously undocumented blind faults within thick sediments of the Colorado River delta. Differential elevation changes show distributed, kilometer-scale bending strains as large as ~10(3) microstrains in response to slip along discontinuous faults cutting crystalline bedrock of the Sierra Cucapah.

Concepts: California, River delta, Earthquake, Arizona, Gulf of California, Baja California, Colorado River, Colorado River Delta


Body size distributions can vary widely among communities, with important implications for ecological dynamics, energetics, and evolutionary history. Here we present a dataset of body size and shape for 12,035 extant Patellogastropoda (true limpet) specimens from the collections of the University of California Museum of Paleontology, compiled using a novel high-throughput morphometric imaging method. These specimens were collected over the past 150 years at 355 localities along a latitudinal gradient ranging from Alaska to Baja California, Mexico and are presented here with individual images, 2D outline coordinates, and 2D measurements of body size and shape. This dataset provides a resource for assemblage-scale macroecological questions and documents the size and diversity of recent patellogastropods in the northeastern Pacific.

Concepts: Evolution, Biology, California, Pacific Ocean, Mexico, Baja California Sur, Limpet, Baja California