SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Baja California

27

25

The Baja California peninsula is the second longest, most geographically isolated peninsula on Earth. Its physiography and the presence of many surrounding islands has facilitated studies of the underlying patterns and drivers of genetic structuring for a wide spectrum of organisms. Chaetodipus spinatus is endemic to the region and occurs on 12 associated islands, including 10 in the Gulf of California and two in the Pacific Ocean. This distribution makes it a model species for evaluating natural historical barriers. We test hypotheses associated with the relationship between the range of the species, patterns in other species, and its relationship to Pleistocene-Holocene climatic changes. We analyzed sequence data from mtDNA genes encoding cytochrome b (Cytb) and cytochrome c oxidase subunits I (COI) and III (COIII) in 26 populations including all 12 islands. The matrilineal genealogy, statistical parsimony network and Bayesian skyline plot indicated an origin of C. spinatus in the southern part of the peninsula. Our analyses detected several differences from the common pattern of peninsular animals: no mid-peninsula break exists, Isla Carmen hosts the most divergent population, the population on an ancient southern Midriff island does not differ from peninsular populations, and a mtDNA peninsular discordance occurs near Loreto.

Concepts: Biology, Pacific Ocean, Australia, Mexico, Baja California peninsula, Baja California Sur, Gulf of California, Baja California

14

Environmental governance is more effective when the scales of ecological processes are well matched with the human institutions charged with managing human-environment interactions. The social-ecological systems (SESs) framework provides guidance on how to assess the social and ecological dimensions that contribute to sustainable resource use and management, but rarely if ever has been operationalized for multiple localities in a spatially explicit, quantitative manner. Here, we use the case of small-scale fisheries in Baja California Sur, Mexico, to identify distinct SES regions and test key aspects of coupled SESs theory. Regions that exhibit greater potential for social-ecological sustainability in one dimension do not necessarily exhibit it in others, highlighting the importance of integrative, coupled system analyses when implementing spatial planning and other ecosystem-based strategies.

Concepts: Scientific method, Dimension, Management, Space, Baja California peninsula, Baja California Sur, Gulf of California, Baja California

7

Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat-use patterns is especially difficult for remote oceanic species. To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ(15) N) patterns that differentiate distinct ocean regions to create a ‘regional isotope characterization’, analysed the δ(15) N values from annual bone growth layer rings from dead-stranded animals, and then combined the bone and regional isotope data to track individual animal movement patterns over multiple years. We used humeri from juvenile North Pacific loggerhead turtles (Caretta caretta), animals that undergo long migrations across the North Pacific Ocean (NPO), using multiple discrete regions as they develop to adulthood. Typical of many migratory marine species, ontogenetic changes in habitat use throughout their decades-long juvenile stage is poorly understood, but each potential habitat has unique foraging opportunities and spatially explicit natural and anthropogenic threats that could affect key life-history parameters. We found a bimodal size/age distribution in the timing that juveniles underwent an ontogenetic habitat shift from the oceanic central North Pacific (CNP) to the neritic east Pacific region near the Baja California Peninsula (BCP) (42·7 ± 7·2 vs. 68·3 ± 3·4 cm carapace length, 7·5 ± 2·7 vs. 15·6 ± 1·7 years). Important to the survival of this population, these disparate habitats differ considerably in their food availability, energy requirements and threats, and these differences can influence life-history parameters such as growth, survival and future fecundity. This is the first evidence of alternative ontogenetic shifts and habitat-use patterns for juveniles foraging in the eastern NPO. We combine two techniques, skeletochronology and stable isotope analysis, to reconstruct multi-year habitat-use patterns of a remote migratory species, linked to estimated ages and body sizes of individuals, to reveal variable ontogeny during the juvenile life stage that could drive alternate life histories and that has the potential to illuminate the migration patterns for other species with accretionary tissues.

Concepts: United States, New Zealand, Pacific Ocean, Australia, Mexico, Ocean, Baja California Sur, Baja California

4

Policymakers and researchers seek answers to how liberalized drug policies affect people who inject drugs (PWID). In response to concerns about the failing “war on drugs,” Mexico recently implemented drug policy reforms that partially decriminalized possession of small amounts of drugs for personal use while promoting drug treatment. Recognizing important epidemiologic, policy, and socioeconomic differences between the United States–where possession of any psychoactive drugs without a prescription remains illegal–and Mexico–where possession of small quantities for personal use was partially decriminalized, we sought to assess changes over time in knowledge, attitudes, behaviors, and infectious disease profiles among PWID in the adjacent border cities of San Diego, CA, USA, and Tijuana, Baja California, Mexico.

Concepts: Infectious disease, Opioid, California, Pacific Ocean, Psychoactive drug, Recreational drug use, Prohibition, Baja California

3

Eastern North Pacific gray whales make one of the longest annual migrations of any mammal, traveling from their summer feeding areas in the Bering and Chukchi Seas to their wintering areas in the lagoons of Baja California, Mexico. Although a significant body of knowledge on gray whale biology and behavior exists, little is known about their vocal behavior while migrating. In this study, we used a sparse hydrophone array deployed offshore of central California to investigate how gray whales behave and use sound while migrating. We detected, localized, and tracked whales for one full migration season, a first for gray whales. We verified and localized 10,644 gray whale M3 calls and grouped them into 280 tracks. Results confirm that gray whales are acoustically active while migrating and their swimming and acoustic behavior changes on daily and seasonal time scales. The seasonal timing of the calls verifies the gray whale migration timing determined using other methods such as counts conducted by visual observers. The total number of calls and the percentage of calls that were part of a track changed significantly over both seasonal and daily time scales. An average calling rate of 5.7 calls/whale/day was observed, which is significantly greater than previously reported migration calling rates. We measured a mean speed of 1.6 m/s and quantified heading, direction, and water depth where tracks were located. Mean speed and water depth remained constant between night and day, but these quantities had greater variation at night. Gray whales produce M3 calls with a root mean square source level of 156.9 dB re 1 μPa at 1 m. Quantities describing call characteristics were variable and dependent on site-specific propagation characteristics.

Concepts: Human migration, California, Pacific Ocean, Root mean square, Humpback whale, Whale surfacing behaviour, Baja California, Gray whale

3

Small-scale fisheries are an important source of food and livelihoods to coastal communities around the world. Understanding the seasonality of fisheries catch and composition is crucial to fisheries management, particularly in the context of changing environmental and socioeconomic conditions. While seasonal variability directly impacts the lives of fishers, most fisheries studies focus on longer-term change. Here we examine seasonal variability in the small-scale fisheries of Baja California Sur, Mexico based on 13 years of government fisheries data. We investigate how four fisheries indicators with direct relevance to ecological resilience-magnitude and variance of landed fish biomass, taxon richness and the proportion of top-trophic-level taxa in total catch-vary within and among years and at multiple spatial scales. We find that these resilience indicators vary both seasonally and spatially. These results highlight the value of finer-scale monitoring and management, particularly for data-poor fisheries.

Concepts: California, Pacific Ocean, Baja California peninsula, Baja California Sur, Gulf of California, Baja California, Municipalities of Mexico, La Paz, Baja California Sur

1

Body size distributions can vary widely among communities, with important implications for ecological dynamics, energetics, and evolutionary history. Here we present a dataset of body size and shape for 12,035 extant Patellogastropoda (true limpet) specimens from the collections of the University of California Museum of Paleontology, compiled using a novel high-throughput morphometric imaging method. These specimens were collected over the past 150 years at 355 localities along a latitudinal gradient ranging from Alaska to Baja California, Mexico and are presented here with individual images, 2D outline coordinates, and 2D measurements of body size and shape. This dataset provides a resource for assemblage-scale macroecological questions and documents the size and diversity of recent patellogastropods in the northeastern Pacific.

Concepts: Evolution, Biology, California, Pacific Ocean, Mexico, Baja California Sur, Limpet, Baja California

1

Dengue is a common and growing problem worldwide, with an estimated 70-140 million cases per year. Traditional, healthcare-based, government-implemented dengue surveillance is resource intensive and slow. As global Internet use has increased, novel, Internet-based disease monitoring tools have emerged. Google Dengue Trends (GDT) uses near real-time search query data to create an index of dengue incidence that is a linear proxy for traditional surveillance. Studies have shown that GDT correlates highly with dengue incidence in multiple countries on a large spatial scale. This study addresses the heterogeneity of GDT at smaller spatial scales, assessing its accuracy at the state-level in Mexico and identifying factors that are associated with its accuracy. We used Pearson correlation to estimate the association between GDT and traditional dengue surveillance data for Mexico at the national level and for 17 Mexican states. Nationally, GDT captured approximately 83% of the variability in reported cases over the 9 study years. The correlation between GDT and reported cases varied from state to state, capturing anywhere from 1% of the variability in Baja California to 88% in Chiapas, with higher accuracy in states with higher dengue average annual incidence. A model including annual average maximum temperature, precipitation, and their interaction accounted for 81% of the variability in GDT accuracy between states. This climate model was the best indicator of GDT accuracy, suggesting that GDT works best in areas with intense transmission, particularly where local climate is well suited for transmission. Internet accessibility (average ∼36%) did not appear to affect GDT accuracy. While GDT seems to be a less robust indicator of local transmission in areas of low incidence and unfavorable climate, it may indicate cases among travelers in those areas. Identifying the strengths and limitations of novel surveillance is critical for these types of data to be used to make public health decisions and forecasting models.

Concepts: Statistics, Climate, Approximation, Estimation, Mexico, Internet, Baja California peninsula, Baja California

1

The following ten new species of the ant genus Temnothorax are described and illustrated: T. anaphalantus (California, Baja California), T. arboreus (California), T. caguatan (Oregon, California, Baja California), T. morongo (California, Baja California), T. myrmiciformis (California, Baja California), T. nuwuvi (Nevada), T. paiute (California, Nevada), T. pseudandrei (Arizona, California), T. quasimodo (California) and T. wardi (California). A key to workers of the twenty-two Temnothorax species known or expected to occur in California is provided.

Concepts: Insect, California, Ant, Hymenoptera, Arizona, Apocrita, Baja California, Colorado River