Discover the most talked about and latest scientific content & concepts.

Concept: Bacterial cell structure


Reported values in the literature on the number of cells in the body differ by orders of magnitude and are very seldom supported by any measurements or calculations. Here, we integrate the most up-to-date information on the number of human and bacterial cells in the body. We estimate the total number of bacteria in the 70 kg “reference man” to be 3.8·1013. For human cells, we identify the dominant role of the hematopoietic lineage to the total count (≈90%) and revise past estimates to 3.0·1013 human cells. Our analysis also updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the number of human cells, and their total mass is about 0.2 kg.

Concepts: DNA, Cell, Archaea, Bacteria, Mathematics, Organism, Chromosome, Bacterial cell structure


The spread of bacterial resistance to antibiotics poses the need for antimicrobial discovery. With traditional search paradigms being exhausted, approaches that are altogether different from antibiotics may offer promising and creative solutions. Here, we introduce a de novo peptide topology that-by emulating the virus architecture-assembles into discrete antimicrobial capsids. Using the combination of high-resolution and real-time imaging, we demonstrate that these artificial capsids assemble as 20-nm hollow shells that attack bacterial membranes and upon landing on phospholipid bilayers instantaneously (seconds) convert into rapidly expanding pores causing membrane lysis (minutes). The designed capsids show broad antimicrobial activities, thus executing one primary function-they destroy bacteria on contact.

Concepts: Bacteria, Virus, Cell membrane, Antibiotic resistance, Antibiotic, Bacterial cell structure, Penicillin, Lipid bilayer


The peptidoglycan wall is a defining feature of bacterial cells and was probably already present in their last common ancestor. L-forms are bacterial variants that lack a cell wall and divide by a variety of processes involving membrane blebbing, tubulation, vesiculation and fission. Their unusual mode of proliferation provides a model for primitive cells and is reminiscent of recently developed in vitro vesicle reproduction processes. Invention of the cell wall may have underpinned the explosion of bacterial life on the Earth. Later innovations in cell envelope structure, particularly the emergence of the outer membrane of Gram-negative bacteria, possibly in an early endospore former, seem to have spurned further major evolutionary radiations. Comparative studies of bacterial cell envelope structure may help to resolve the early key steps in evolutionary development of the bacterial domain of life.

Concepts: Archaea, Bacteria, Evolution, Organism, Microbiology, Cell membrane, Cell wall, Bacterial cell structure


ABSTRACT Viscoelastic deformation of the contact volume between adhering bacteria and substratum surfaces plays a role in their adhesion and detachment. Currently, there are no deformation models that account for the heterogeneous structure and composition of bacteria, consisting of a relatively soft outer layer and a more rigid, hard core enveloped by a cross-linked peptidoglycan layer. The aim of this paper is to present a new, simple model to derive the reduced Young’s modulus of the contact volume between adhering bacteria and substratum surfaces based on the relationship between deformation and applied external loading force, measured using atomic force microscopy. The model assumes that contact is established through a cylinder with constant volume and does not require assumptions on the properties and dimensions of the contact cylinder. The reduced Young’s moduli obtained (8 to 47 kPa) and dimensions of the contact cylinders could be interpreted on the basis of the cell surface features and cell wall characteristics, i.e., surfaces that are more rigid (because of either less fibrillation, less extracellular polymeric substance production, or a higher degree of cross-linking of the peptidoglycan layer) had shorter contact cylinders and higher reduced Young’s moduli. Application of an existing Hertz model to our experimental data yielded reduced Young’s moduli that were up to 100 times higher for all strains investigated, likely because the Hertz model pertains to a major extent to the more rigid peptidoglycan layer and not only to the soft outer bacterial cell surface, involved in the bond between a bacterium and a substratum surface. IMPORTANCE The viscoelastic properties of the bond between an adhering bacterium and a substratum surface play a role in determining bacterial detachment. For instance, removal of an oral biofilm proceeds according to a viscoelastic failure model, and biofilm left behind after toothbrushing has been found to possess expanded bond lengths between adhering bacteria due to viscoelastic deformation. Current elastic deformation models are unable to distinguish between the soft outer bacterial cell surface and the hard core of a bacterium, enveloped by a peptidoglycan layer. Therefore, here we present a simple model to calculate the Young’s modulus and deformation of the contact volume between an adhering bacterium and a substratum surface that accounts for the heterogeneous structure of a bacterium.

Concepts: Archaea, Bacteria, Cell membrane, Cell wall, Bacterial cell structure, Peptidoglycan, Young's modulus, Deformation


Disease-causing bacteria of the genus Aeromonas are able to adhere to pipe materials, colonizing the surfaces and forming biofilms in water distribution systems. The aim of our research was to study how the modification of materials used commonly in the water industry can reduce bacterial cell attachment. Polyvinyl chloride and silicone elastomer surfaces were activated and modified with reactive organo-silanes by coupling or co-crosslinking silanes with the native material. Both the native and modified surfaces were tested using the bacterial strain Aeromonas hydrophila, which was isolated from the Polish water distribution system. The surface tension of both the native and modified surfaces was measured. To determine cell viability and bacterial adhesion two methods were used, namely plate count and luminometry. Results were expressed in colony-forming units (c.f.u.) and in relative light units (RLU) per cm(2). Almost all the chemically modified surfaces exhibited higher anti-adhesive and anti-microbial properties in comparison to the native surfaces. Among the modifying agents examined, poly[dimethylsiloxane-co-(N,N-dimethyl-N-n-octylammoniopropyl chloride) methylsiloxane)] terminated with hydroxydimethylsilyl groups (20 %) in silicone elastomer gave the most desirable results. The surface tension of this modifier, was comparable to the non-polar native surface. However, almost half of this value was due to the result of polar forces. In this case, in an adhesion analysis, only 1 RLU cm(-2) and less than 1 c.f.u. cm(-2) were noted. For the native gumosil, the results were 9,375 RLU cm(-2) and 2.5 × 10(8) c.f.u. cm(-2), respectively. The antibacterial activity of active organo-silanes was associated only with the carrier surface because no antibacterial compounds were detected in liquid culture media, in concentrations that were able to inhibit cell growth.

Concepts: Archaea, Bacteria, Microbiology, Materials science, Bacterial cell structure, Microbiology terms, Silicone rubber, Aeromonas


To isolate and characterize indigenous algicidal bacteria and their algae-lysing compounds active against Microcystis aeruginosa, strains TH1, TH2, and FACHB 905.

Concepts: Immune system, Bacteria, Fungus, T helper cell, Pseudomonas aeruginosa, Bacterial cell structure, Vermilion, Carmine


In this study, scaling, polishing and daily tooth brushing were performed in 20 beagle dogs, and the number of oral bacteria was determined using a bacterial counter. The dogs were randomized into the scaling (S), scaling + polishing (SP), scaling + tooth daily brushing (SB) and scaling + polishing + tooth daily brushing (SPB) groups. Samples were collected from the buccal surface of the maxillary fourth premolars of the dogs immediately after scaling and every week thereafter from weeks 1 to 8. Throughout the study, the number of bacteria was significantly lower in the SB and SPB groups compared with the S group. The findings suggest that daily tooth brushing inhibited oral bacterial growth in the dogs.

Concepts: Bacteria, Evolution, Microbiology, Beagle, Bacterial cell structure, Bacteriology


Fecal transplants are increasingly utilized for treatment of recurrent infections (i.e., Clostridium difficile) in the human gut and as a general research tool for gain-of-function experiments (i.e., gavage of fecal pellets) in animal models. Changes observed in the recipient’s biology are routinely attributed to bacterial cells in the donor feces (~1011 per gram of human wet stool). Here, we examine the literature and summarize findings on the composition of fecal matter in order to raise cautiously the profile of its multipart nature. In addition to viable bacteria, which may make up a small fraction of total fecal matter, other components in unprocessed human feces include colonocytes (~107 per gram of wet stool), archaea (~108 per gram of wet stool), viruses (~108 per gram of wet stool), fungi (~106 per gram of wet stool), protists, and metabolites. Thus, while speculative at this point and contingent on the transplant procedure and study system, nonbacterial matter could contribute to changes in the recipient’s biology. There is a cautious need for continued reductionism to separate out the effects and interactions of each component.

Concepts: Bacteria, Gut flora, Evolution, Feces, Human feces, Bacterial cell structure, Clostridium difficile, Night soil


Living systems, such as bacteria, yeasts, and mammalian cells, can be genetically programmed with synthetic circuits that execute sensing, computing, memory, and response functions. Integrating these functional living components into materials and devices will provide powerful tools for scientific research and enable new technological applications. However, it has been a grand challenge to maintain the viability, functionality, and safety of living components in freestanding materials and devices, which frequently undergo deformations during applications. Here, we report the design of a set of living materials and devices based on stretchable, robust, and biocompatible hydrogel-elastomer hybrids that host various types of genetically engineered bacterial cells. The hydrogel provides sustainable supplies of water and nutrients, and the elastomer is air-permeable, maintaining long-term viability and functionality of the encapsulated cells. Communication between different bacterial strains and with the environment is achieved via diffusion of molecules in the hydrogel. The high stretchability and robustness of the hydrogel-elastomer hybrids prevent leakage of cells from the living materials and devices, even under large deformations. We show functions and applications of stretchable living sensors that are responsive to multiple chemicals in a variety of form factors, including skin patches and gloves-based sensors. We further develop a quantitative model that couples transportation of signaling molecules and cellular response to aid the design of future living materials and devices.

Concepts: DNA, Gene, Genetics, Bacteria, Organism, Science, Chemical substance, Bacterial cell structure


Crotalicidin (Ctn), a cathelicidin-related peptide from the venom of a South American rattlesnake, possesses potent antimicrobial, antitumor, and antifungal properties. Previously, we have shown that its C-terminal fragment, Ctn[15-34], retains the antimicrobial and antitumor activities, but is less toxic to healthy cells and has improved serum stability. Here, we investigated the mechanism of action of Ctn and Ctn[15-34] against gram-negative bacteria. Both peptides were bactericidal, killing ~90% of Escherichia coli and Pseudomonas aeruginosa cells within 90-120 min and 5-30 min, respectively. Studies of ζ potential at the bacterial cell membrane suggested that both peptides accumulate at and neutralize negative charges on the bacterial surface. Flow cytometry experiments confirmed that both peptides permeabilize the bacterial cell membrane, but suggested slightly different mechanisms of action. Ctn[15-34] permeabilized the membrane immediately upon addition to the cells, whereas Ctn had a lag phase before inducing membrane damage and exhibited more complex cell-killing activity, probably because of two different modes of membrane permeabilization. Using surface plasmon resonance and leakage assays with model vesicles, we confirmed that Ctn[15-34] binds to and disrupts lipid membranes and also observed that Ctn[15-34] has a preference for vesicles that mimic bacterial or tumor cell membranes. Atomic force microscopy visualized the effect of these peptides on bacterial cells, and confocal microscopy confirmed their localization on the bacterial surface. Our studies shed light onto the antimicrobial mechanisms of Ctn and Ctn[15-34], suggesting Ctn[15-34] as a promising lead for development as an antibacterial/antitumor agent.

Concepts: Immune system, Protein, Bacteria, Cell membrane, Escherichia coli, Pseudomonas aeruginosa, Cell wall, Bacterial cell structure