SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Bacillus thuringiensis

210

Development and evaluation of new insect pest management tools is critical for overcoming over-reliance upon, and growing resistance to, synthetic, biological and plant-expressed insecticides. For transgenic crops expressing insecticidal proteins from the bacterium Bacillus thuringiensis (‘Bt crops’) emergence of resistance is slowed by maintaining a proportion of the crop as non-Bt varieties, which produce pest insects unselected for resistance. While this strategy has been largely successful, multiple cases of Bt resistance have now been reported. One new approach to pest management is the use of genetically engineered insects to suppress populations of their own species. Models suggest that released insects carrying male-selecting (MS) transgenes would be effective agents of direct, species-specific pest management by preventing survival of female progeny, and simultaneously provide an alternative insecticide resistance management strategy by introgression of susceptibility alleles into target populations. We developed a MS strain of the diamondback moth, Plutella xylostella, a serious global pest of crucifers. MS-strain larvae are reared as normal with dietary tetracycline, but, when reared without tetracycline or on host plants, only males will survive to adulthood. We used this strain in glasshouse-cages to study the effect of MS male P. xylostella releases on target pest population size and spread of Bt resistance in these populations.

Concepts: Male, Agriculture, Insect, Pesticide, Bacillus thuringiensis, Insecticide, Diamondback moth, Transgene

159

Multiple lines of transgenic rice expressing insecticidal genes from the bacterium Bacillus thuringiensis (Bt) have been developed in China, posing the prospect of increases in production with decreased application of pesticides. We explore the issues facing adoption of Bt rice for commercial production in China. A body of safety assessment work on Bt rice has shown that Bt rice poses a negligible risk to the environment and that Bt rice products are as safe as non-Bt control rice products as food. China has a relatively well-developed regulatory system for risk assessment and management of genetically modified (GM) plants; however, decision-making regarding approval of commercial production has become politicized, and two Bt rice lines that otherwise were ready have not been allowed to enter the Chinese agricultural system. We predict that Chinese farmers would value the prospect of increased yield with decreased use of pesticide and would readily adopt production of Bt rice. That Bt rice lines may not be commercialized in the near future we attribute to social pressures, largely due to the low level of understanding and acceptance of GM crops by Chinese consumers. Hence, enhancing communication of GM crop science-related issues to the public is an important, unmet need. While the dynamics of each issue are particular to China, they typify those in many countries where adoption of GM crops has been not been rapid; hence, the assessment of these dynamics might inform resolution of these issues in other countries.

Concepts: Bacteria, Risk, Pesticide, Bacillus thuringiensis, Genetically modified organism, Genetically modified food, Genetic engineering, Monsanto

149

Mosquito control based on the use of Bacillus thuringiensis israelensis (Bti) is regarded as an environmental friendly method. However, Bti also affects non-target chironomid midges that are recognized as a central resource in wetland food webs. To evaluate the risk for different larval stages of Chironomus riparius we performed a test series of daily acute toxicity laboratory tests following OECD guideline 235 over the entire aquatic life cycle of 28 days. Our study is the first approach that performs an OECD approved test design with Bti and C. riparius as a standard organism in ecotoxicological testing. First-instar larvae of Chironomus riparius show an increased sensitivity towards Bti which is two orders of magnitude higher than for fourth instar larvae. Most EC50 values described in the literature are based on acute toxicity tests using third and fourth instar larvae. The risk for chironomids is underestimated when applying the criteria of the biocide regulation EU 528/2012 to our data and therefore the existing assessment approval is not protective. Possible impacts of Bti induced changes in chironomid abundances and community composition may additionally affect organisms at higher trophic levels, especially in spring when chironomid midges represent a key food source for reproducing vertebrates.

Concepts: Organism, Larva, Mosquito, Trophic level, Food chain, Bacillus thuringiensis, Chironomidae, Bacillus thuringiensis israelensis

149

Transgenic crop “pyramids” producing two or more Bacillus thuringiensis (Bt) toxins active against the same pest are used to delay evolution of resistance in insect pest populations. Laboratory and greenhouse experiments were performed with fall armyworm, Spodoptera frugiperda, to characterize resistance to Bt maize producing Cry1A.105 and Cry2Ab and test some assumptions of the “pyramid” resistance management strategy. Selection of a field-derived strain of S. frugiperda already resistant to Cry1F maize with Cry1A.105 + Cry2Ab maize for ten generations produced resistance that allowed the larvae to colonize and complete the life cycle on these Bt maize plants. Greenhouse experiments revealed that the resistance was completely recessive (Dx = 0), incomplete, autosomal, and without maternal effects or cross-resistance to the Vip3Aa20 toxin produced in other Bt maize events. This profile of resistance supports some of the assumptions of the pyramid strategy for resistance management. However, laboratory experiments with purified Bt toxin and plant leaf tissue showed that resistance to Cry1A.105 + Cry2Ab2 maize further increased resistance to Cry1Fa, which indicates that populations of fall armyworm have high potential for developing resistance to some currently available pyramided maize used against this pest, especially where resistance to Cry1Fa was reported in the field.

Concepts: Bacillus, Leaf, Bacillus thuringiensis, Endotoxin, Genetically modified food, Army worm, Spodoptera, Transgenic maize

146

The cyanobacterium Anabaena PCC 7120#11 has been genetically engineered to act as a delivery vehicle for Bacillus thuringiensis subspecies israelensis mosquitocidal toxins. To address ecological concerns about releasing this genetically engineered microorganism into the environment for mosquito larva control, the persistence and ecological impacts of PCC 7120#11 was evaluated using multi-species, standardized aquatic microcosms.

Concepts: Bacteria, Biology, Microbiology, Ecology, Natural environment, Environmentalism, Bacillus thuringiensis, Bacillus thuringiensis israelensis

56

Many insect pests have developed resistance to existing chemical insecticides and consequently there is much interest in the development of new insecticidal compounds with novel modes of action. Although spiders have deployed insecticidal toxins in their venoms for over 250 million years, there is no evolutionary selection pressure on these toxins to possess oral activity since they are injected into prey and predators via a hypodermic needle-like fang. Thus, it has been assumed that spider-venom peptides are not orally active and are therefore unlikely to be useful insecticides. Contrary to this dogma, we show that it is possible to isolate spider-venom peptides with high levels of oral insecticidal activity by directly screening for per os toxicity. Using this approach, we isolated a 34-residue orally active insecticidal peptide (OAIP-1) from venom of the Australian tarantula Selenotypus plumipes. The oral LD50 for OAIP-1 in the agronomically important cotton bollworm Helicoverpa armigera was 104.2±0.6 pmol/g, which is the highest per os activity reported to date for an insecticidal venom peptide. OAIP-1 is equipotent with synthetic pyrethroids and it acts synergistically with neonicotinoid insecticides. The three-dimensional structure of OAIP-1 determined using NMR spectroscopy revealed that the three disulfide bonds form an inhibitor cystine knot motif; this structural motif provides the peptide with a high level of biological stability that probably contributes to its oral activity. OAIP-1 is likely to be synergized by the gut-lytic activity of the Bacillus thuringiensis Cry toxin (Bt) expressed in insect-resistant transgenic crops, and consequently it might be a good candidate for trait stacking with Bt.

Concepts: Protein, Toxin, Bacillus thuringiensis, Endotoxin, Spider, Venom, Helicoverpa armigera, Spider bite

46

Despite widespread adoption of genetically modified crops in many countries, heated controversies about their advantages and disadvantages continue. Especially for developing countries, there are concerns that genetically modified crops fail to benefit smallholder farmers and contribute to social and economic hardship. Many economic studies contradict this view, but most of them look at short-term impacts only, so that uncertainty about longer-term effects prevails. We address this shortcoming by analyzing economic impacts and impact dynamics of Bt cotton in India. Building on unique panel data collected between 2002 and 2008, and controlling for nonrandom selection bias in technology adoption, we show that Bt has caused a 24% increase in cotton yield per acre through reduced pest damage and a 50% gain in cotton profit among smallholders. These benefits are stable; there are even indications that they have increased over time. We further show that Bt cotton adoption has raised consumption expenditures, a common measure of household living standard, by 18% during the 2006-2008 period. We conclude that Bt cotton has created large and sustainable benefits, which contribute to positive economic and social development in India.

Concepts: Economics, Bacillus, Developing country, Bacillus thuringiensis, Genetically modified food, Transgenic maize, Monsanto, Pink bollworm

41

Here we present vB_BanS-Tsamsa, a novel temperate phage isolated from Bacillus anthracis, the agent responsible for anthrax infections in wildlife, livestock and humans. Tsamsa phage is a giant siphovirus (order Caudovirales), featuring a long, flexible and non-contractile tail of 440 nm (not including baseplate structure) and an isometric head of 82 nm in diameter. We induced Tsamsa phage in samples from two different carcass sites in Etosha National Park, Namibia. The Tsamsa phage genome is the largest sequenced Bacillus siphovirus, containing 168,876 bp and 272 ORFs. The genome features an integrase/recombinase enzyme, indicative of a temperate lifestyle. Among bacterial strains tested, the phage infected only certain members of the Bacillus cereus sensu lato group (B. anthracis, B. cereus and B. thuringiensis) and exhibited moderate specificity for B. anthracis. Tsamsa lysed seven out of 25 B. cereus strains, two out of five B. thuringiensis strains and six out of seven B. anthracis strains tested. It did not lyse B. anthracis PAK-1, an atypical strain that is also resistant to both gamma phage and cherry phage. The Tsamsa endolysin features a broader lytic spectrum than the phage host range, indicating possible use of the enzyme in Bacillus biocontrol.

Concepts: Bacteria, Bacteriophage, Bacillus, Antibiotic, Bacillus thuringiensis, Bacillus anthracis, Bacillaceae, Bacilli

35

Transgenic corn engineered with genes expressing insecticidal toxins from the bacterium Bacillus thuringiensis (Berliner) (Bt) are now a major tool in insect pest management. With its widespread use, insect resistance is a major threat to the sustainability of the Bt transgenic technology. For all Bt corn expressing Cry toxins, the high dose requirement for resistance management is not achieved for corn earworm, Helicoverpa zea (Boddie), which is more tolerant to the Bt toxins.

Concepts: Gene expression, Bacteria, Bacillus, Maize, Bacillus thuringiensis, Biological pest control, Genetically modified food, Transgenic maize

35

We present the first evidence that transgenic Bacillus thuringiensis (Bt) corn pollen naturally deposited on Asclepias syriaca; common milkweed, in a corn field causes significant mortality of Danaus plexippus L. (Lepidoptera: Danaidae) larvae. Larvae feeding for 48 h on A. syriaca plants naturally dusted with pollen from Bt corn plants suffered significantly higher rates of mortality at 48 h (20±3%) compared to larvae feeding on leaves with no pollen (3±3%), or feeding on leaves with non-Bt pollen (0%). Mortality at 120 h of D. plexippus larvae exposed to 135 pollen grains/cm(2) of transgenic pollen for 48 h ranged from 37 to 70%. We found no sub-lethal effects on D. plexippus adults reared from larvae that survived a 48-h exposure to three concentrations of Bt pollen. Based on our quantification of the wind dispersal of this pollen beyond the edges of agricultural fields, we predict that the effects of transgenic pollen on D. plexippus may be observed at least 10 m from transgenic field borders. However, the highest larval mortality will likely occur on A. syriaca plants in corn fields or within 3 m of the edge of a transgenic corn field. We conclude that the ecological effects of transgenic insecticidal crops need to be evaluated more fully before they are planted over extensive areas.

Concepts: Insect, Asclepias, Lepidoptera, Bacillus thuringiensis, Genetically modified food, Transgenic maize, Monarch, Asclepias syriaca