SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Avian influenza

359

Highly pathogenic avian H5N1 influenza A viruses occasionally infect humans, but currently do not transmit efficiently among humans. The viral haemagglutinin (HA) protein is a known host-range determinant as it mediates virus binding to host-specific cellular receptors. Here we assess the molecular changes in HA that would allow a virus possessing subtype H5 HA to be transmissible among mammals. We identified a reassortant H5 HA/H1N1 virus-comprising H5 HA (from an H5N1 virus) with four mutations and the remaining seven gene segments from a 2009 pandemic H1N1 virus-that was capable of droplet transmission in a ferret model. The transmissible H5 reassortant virus preferentially recognized human-type receptors, replicated efficiently in ferrets, caused lung lesions and weight loss, but was not highly pathogenic and did not cause mortality. These results indicate that H5 HA can convert to an HA that supports efficient viral transmission in mammals; however, we do not know whether the four mutations in the H5 HA identified here would render a wholly avian H5N1 virus transmissible. The genetic origin of the remaining seven viral gene segments may also critically contribute to transmissibility in mammals. Nevertheless, as H5N1 viruses continue to evolve and infect humans, receptor-binding variants of H5N1 viruses with pandemic potential, including avian-human reassortant viruses as tested here, may emerge. Our findings emphasize the need to prepare for potential pandemics caused by influenza viruses possessing H5 HA, and will help individuals conducting surveillance in regions with circulating H5N1 viruses to recognize key residues that predict the pandemic potential of isolates, which will inform the development, production and distribution of effective countermeasures.

Concepts: Virus, Influenza, Avian influenza, Influenza pandemic, Transmission and infection of H5N1, Pandemic, 2009 flu pandemic, Influenza A virus subtype H5N1

254

The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

Concepts: DNA, Protein, Influenza, Avian influenza, Influenza pandemic, Transmission and infection of H5N1, Pandemic, Human flu

180

Influenza A H5N1 has killed millions of birds and raises serious public health concern because of its potential to spread to humans and cause a global pandemic. While the early focus was in Asia, recent evidence suggests that Egypt is a new epicenter for the disease. This includes characterization of a variant clade 2.2.1.1, which has been found almost exclusively in Egypt.We analyzed 226 HA and 92 NA sequences with an emphasis on the H5N1 2.2.1.1 strains in Egypt using a Bayesian discrete phylogeography approach. This allowed modeling of virus dispersion between Egyptian governorates including the most likely origin.

Concepts: Public health, Epidemiology, Influenza, Avian influenza, Influenza pandemic, Pandemic, 2009 flu pandemic, Egypt

171

160

 The 2014-15 influenza season was distinguished by an A(H3N2) epidemic of antigenically-drifted virus and vaccine containing identical components to 2013-14. We report 2014-15 vaccine effectiveness (VE) estimates from Canada and explore contributing agent-host factors.

Concepts: Immune system, Infectious disease, Virus, Vaccine, Vaccination, Influenza, Avian influenza, Influenza vaccine

157

During March 2013-February 24, 2017, annual epidemics of avian influenza A(H7N9) in China resulted in 1,258 avian influenza A(H7N9) virus infections in humans being reported to the World Health Organization (WHO) by the National Health and Family Planning Commission of China and other regional sources (1). During the first four epidemics, 88% of patients developed pneumonia, 68% were admitted to an intensive care unit, and 41% died (2). Candidate vaccine viruses (CVVs) were developed, and vaccine was manufactured based on representative viruses detected after the emergence of A(H7N9) virus in humans in 2013. During the ongoing fifth epidemic (beginning October 1, 2016),* 460 human infections with A(H7N9) virus have been reported, including 453 in mainland China, six associated with travel to mainland China from Hong Kong (four cases), Macao (one) and Taiwan (one), and one in an asymptomatic poultry worker in Macao (1). Although the clinical characteristics and risk factors for human infections do not appear to have changed (2,3), the reported human infections during the fifth epidemic represent a significant increase compared with the first four epidemics, which resulted in 135 (first epidemic), 320 (second), 226 (third), and 119 (fourth epidemic) human infections (2). Most human infections continue to result in severe respiratory illness and have been associated with poultry exposure. Although some limited human-to-human spread continues to be identified, no sustained human-to-human A(H7N9) transmission has been observed (2,3).

Concepts: Virus, Influenza, Avian influenza, People's Republic of China, Pandemic, Influenza vaccine, World Health Organization, Hong Kong

152

Highly Pathogenic Avian Influenza (HPAI) H5N1 virus is a threat to animal and public health worldwide. Till date, the H5N1 virus has claimed 402 human lives, with a mortality rate of 58 percent and has caused the death or culling of millions of poultry since 2003. In this study, we have designed three siRNAs (PB2-2235, PB2-479 and NP-865) targeting PB2 and NP genes of avian influenza virus and evaluated their potential, measured by hemagglutination (HA), plaque reduction and Real time RT-PCR assay, in inhibiting H5N1 virus (A/chicken/Navapur/7972/2006) replication in MDCK cells. The siRNAs caused 8- to 16-fold reduction in virus HA titers at 24 h after challenged with 100TCID50 of virus. Among these siRNAs, PB2-2235 offered the highest inhibition of virus replication with 16-fold reduction in virus HA titer, 80 percent reduction in viral plaque counts and 94 percent inhibition in expression of specific RNA at 24 h. The other two siRNAs had 68-73 percent and 87-88 percent reduction in viral plaque counts and RNA copy number, respectively. The effect of siRNA on H5N1 virus replication continued till 48h (maximum observation period). These findings suggest that PB2-2235 could efficiently inhibit HPAI H5N1 virus replication.

Concepts: Virus, Influenza, Avian influenza, Influenza pandemic, Transmission and infection of H5N1, Global spread of H5N1, Influenza A virus subtype H5N1, H5N1

148

In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months (1). Each influenza season since 2004-05, CDC has estimated the effectiveness of seasonal influenza vaccine to prevent influenza-associated, medically attended, acute respiratory illness (ARI). This report uses data, as of February 4, 2017, from 3,144 children and adults enrolled in the U.S. Influenza Vaccine Effectiveness Network (U.S. Flu VE Network) during November 28, 2016-February 4, 2017, to estimate an interim adjusted effectiveness of seasonal influenza vaccine for preventing laboratory-confirmed influenza virus infection associated with medically attended ARI. During this period, overall vaccine effectiveness (VE) (adjusted for study site, age group, sex, race/ethnicity, self-rated general health, and days from illness onset to enrollment) against influenza A and influenza B virus infection associated with medically attended ARI was 48% (95% confidence interval [CI] = 37%-57%). Most influenza infections were caused by A (H3N2) viruses. VE was estimated to be 43% (CI = 29%-54%) against illness caused by influenza A (H3N2) virus and 73% (CI = 54%-84%) against influenza B virus. These interim VE estimates indicate that influenza vaccination reduced the risk for outpatient medical visits by almost half. Because influenza activity remains elevated (2), CDC and the Advisory Committee on Immunization Practices recommend that annual influenza vaccination efforts continue as long as influenza viruses are circulating (1). Vaccination with 2016-17 influenza vaccines will reduce the number of infections with most currently circulating influenza viruses. Persons aged ≥6 months who have not yet been vaccinated this season should be vaccinated as soon as possible.

Concepts: Immune system, Virus, Vaccine, Vaccination, Influenza, Avian influenza, Influenza pandemic, Influenza vaccine

144

Severe disease in humans caused by a novel influenza A virus that is distinct from circulating human influenza A viruses is a seminal event. It might herald sporadic human infections from an animal source - e.g., highly pathogenic avian influenza (HPAI) A (H5N1) virus; or it might signal the start of an influenza pandemic - e.g., influenza A(H1N1)pdm09 virus. Therefore, the discovery of novel influenza A (H7N9) virus infections in three critically ill patients reported in the Journal by Gao and colleagues is of major public health significance. Chinese scientists are to be congratulated for the apparent speed with which . . .

Concepts: Microbiology, Virus, Influenza, Avian influenza, Influenza pandemic, Pandemic, Influenza vaccine, Influenza A virus subtype H5N1

142

Current influenza vaccines provide limited protection against circulating influenza A viruses. A universal influenza vaccine will eliminate the intrinsic limitations of the seasonal flu vaccines. Here we report methodology to generate double-layered protein nanoparticles as a universal influenza vaccine. Layered nanoparticles are fabricated by desolvating tetrameric M2e into protein nanoparticle cores and coating these cores by crosslinking headless HAs. Representative headless HAs of two HA phylogenetic groups are constructed and purified. Vaccinations with the resulting protein nanoparticles in mice induces robust long-lasting immunity, fully protecting the mice against challenges by divergent influenza A viruses of the same group or both groups. The results demonstrate the importance of incorporating both structure-stabilized HA stalk domains and M2e into a universal influenza vaccine to improve its protective potency and breadth. These potent disassemblable protein nanoparticles indicate a wide application in protein drug delivery and controlled release.

Concepts: Pneumonia, Vaccine, Vaccination, Influenza, Avian influenza, Influenza pandemic, Influenza vaccine, Influenza A virus