Discover the most talked about and latest scientific content & concepts.

Concept: Avialae


Ticks are currently among the most prevalent blood-feeding ectoparasites, but their feeding habits and hosts in deep time have long remained speculative. Here, we report direct and indirect evidence in 99 million-year-old Cretaceous amber showing that hard ticks and ticks of the extinct new family Deinocrotonidae fed on blood from feathered dinosaurs, non-avialan or avialan excluding crown-group birds. A †Cornupalpatum burmanicum hard tick is entangled in a pennaceous feather. Two deinocrotonids described as †Deinocroton draculi gen. et sp. nov. have specialised setae from dermestid beetle larvae (hastisetae) attached to their bodies, likely indicating cohabitation in a feathered dinosaur nest. A third conspecific specimen is blood-engorged, its anatomical features suggesting that deinocrotonids fed rapidly to engorgement and had multiple gonotrophic cycles. These findings provide insight into early tick evolution and ecology, and shed light on poorly known arthropod-vertebrate interactions and potential disease transmission during the Mesozoic.

Concepts: Bird, Extinction, Dinosaur, Feathered dinosaurs, Archaeopteryx, Feather, Avialae, Microraptor


Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of “display arenas” or leks, and consistent with “nest scrape display” behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.

Concepts: Bird, Reptile, Fossil, Dinosaur, Saurischia, Theropoda, Maniraptora, Avialae


Archaeopteryx is an iconic fossil that has long been pivotal for our understanding of the origin of birds. Remains of this important taxon have only been found in the Late Jurassic lithographic limestones of Bavaria, Germany. Twelve skeletal specimens are reported so far. Archaeopteryx was long the only pre-Cretaceous paravian theropod known, but recent discoveries from the Tiaojishan Formation, China, yielded a remarkable diversity of this clade, including the possibly oldest and most basal known clade of avialan, here named Anchiornithidae. However, Archaeopteryx remains the only Jurassic paravian theropod based on diagnostic material reported outside China.

Concepts: Bird, Dinosaur, Archaeopteryx, Theropoda, Dromaeosauridae, Maniraptora, Jurassic, Avialae


The recent discovery of small paravian theropod dinosaurs with well-preserved feathers in the Middle-Late Jurassic Tiaojishan Formation of Liaoning Province (northeastern China) has challenged the pivotal position of Archaeopteryx, regarded from its discovery to be the most basal bird. Removing Archaeopteryx from the base of Avialae to nest within Deinonychosauria implies that typical bird flight, powered by the forelimbs only, either evolved at least twice, or was subsequently lost or modified in some deinonychosaurians. Here we describe the complete skeleton of a new paravian from the Tiaojishan Formation of Liaoning Province, China. Including this new taxon in a comprehensive phylogenetic analysis for basal Paraves does the following: (1) it recovers it as the basal-most avialan; (2) it confirms the avialan status of Archaeopteryx; (3) it places Troodontidae as the sister-group to Avialae; (4) it supports a single origin of powered flight within Paraves; and (5) it implies that the early diversification of Paraves and Avialae took place in the Middle-Late Jurassic period.

Concepts: Bird, Dinosaur, Archaeopteryx, Theropoda, Dromaeosauridae, Troodontidae, Maniraptora, Avialae


Features that were once considered exclusive to modern birds, such as feathers and a furcula, are now known to have first appeared in non-avian dinosaurs. However, relatively little is known of the early evolutionary history of the hyperinflated brain that distinguishes birds from other living reptiles and provides the important neurological capablities required by flight. Here we use high-resolution computed tomography to estimate and compare cranial volumes of extant birds, the early avialan Archaeopteryx lithographica, and a number of non-avian maniraptoran dinosaurs that are phylogenetically close to the origins of both Avialae and avian flight. Previous work established that avian cerebral expansion began early in theropod history and that the cranial cavity of Archaeopteryx was volumetrically intermediate between these early forms and modern birds. Our new data indicate that the relative size of the cranial cavity of Archaeopteryx is reflective of a more generalized maniraptoran volumetric signature and in several instances is actually smaller than that of other non-avian dinosaurs. Thus, bird-like encephalization indices evolved multiple times, supporting the conclusion that if Archaeopteryx had the neurological capabilities required of flight, so did at least some other non-avian maniraptorans. This is congruent with recent findings that avialans were not unique among maniraptorans in their ability to fly in some form.

Concepts: Evolution, Bird, Dinosaur, Feathered dinosaurs, Archaeopteryx, Theropoda, Maniraptora, Avialae


Recent discoveries of large leg feathers in some theropods have implications for our understanding of the evolution of integumentary features on the avialan leg, and particularly of their relevance for the origin of avialan flight. Here we report 11 basal avialan specimens that will greatly improve our knowledge of leg integumentary features among early birds. In particular, they provide solid evidence for the existence of enlarged leg feathers on a variety of basal birds, suggest that extensively scaled feet might have appeared secondarily at an early stage in ornithuromorph evolution, and demonstrate a distal-to-proximal reduction pattern for leg feathers in avialan evolution.

Concepts: Bird, Metaphysics, Dinosaur, Feathered dinosaurs, Archaeopteryx, Wing, Theropoda, Avialae


Theropod dinosaurs show striking morphological and functional tail variation; e.g., a long, robust, basal theropod tail used for counterbalance, or a short, modern avian tail used as an aerodynamic surface. We used a quantitative morphological and functional analysis to reconstruct intervertebral joint stiffness in the tail along the theropod lineage to extant birds. This provides new details of the tail’s morphological transformation, and for the first time quantitatively evaluates its biomechanical consequences. We observe that both dorsoventral and lateral joint stiffness decreased along the non-avian theropod lineage (between nodes Theropoda and Paraves). Our results show how the tail structure of non-avian theropods was mechanically appropriate for holding itself up against gravity and maintaining passive balance. However, as dorsoventral and lateral joint stiffness decreased, the tail may have become more effective for dynamically maintaining balance. This supports our hypothesis of a reduction of dorsoventral and lateral joint stiffness in shorter tails. Along the avian theropod lineage (Avialae to crown group birds), dorsoventral and lateral joint stiffness increased overall, which appears to contradict our null expectation. We infer that this departure in joint stiffness is specific to the tail’s aerodynamic role and the functional constraints imposed by it. Increased dorsoventral and lateral joint stiffness may have facilitated a gradually improved capacity to lift, depress, and swing the tail. The associated morphological changes should have resulted in a tail capable of producing larger muscular forces to utilise larger lift forces in flight. Improved joint mobility in neornithine birds potentially permitted an increase in the range of lift force vector orientations, which might have improved flight proficiency and manoeuvrability. The tail morphology of modern birds with tail fanning capabilities originated in early ornithuromorph birds. Hence, these capabilities should have been present in the early Cretaceous, with incipient tail-fanning capacity in the earliest pygostylian birds.

Concepts: Bird, Force, Drag, Dinosaur, Theropoda, Maniraptora, Avialae, Spinosauridae


With their elongated forelimbs and variable aerial skills, paravian dinosaurs, a clade also comprising modern birds, are in the hotspot of vertebrate evolutionary research. Inferences on the early evolution of flight largely rely on bone and feather morphology, while osteohistological traits are usually studied to explore life-history characteristics. By sampling and comparing multiple homologous fore- and hind limb elements, we integrate for the first time qualitative and quantitative osteohistological approaches to get insight into the intraskeletal growth dynamics and their functional implications in five paravian dinosaur taxa, Anchiornis, Aurornis, Eosinopteryx, Serikornis, and Jeholornis. Our qualitative assessment implies a considerable diversity in allometric/isometric growth patterns among these paravians. Quantitative analyses show that neither taxa nor homologous elements have characteristic histology, and that ontogenetic stage, element size and the newly introduced relative element precocity only partially explain the diaphyseal histovariability. Still, Jeholornis, the only avialan studied here, is histologically distinct from all other specimens in the multivariate visualizations raising the hypothesis that its bone tissue characteristics may be related to its superior aerial capabilities compared to the non-avialan paravians. Our results warrant further research on the osteohistological correlates of flight and developmental strategies in birds and bird-like dinosaurs.

Concepts: Scientific method, Evolution, Bird, Qualitative research, Dinosaur, Theropoda, Troodontidae, Avialae


Troodontidae is a clade of small-bodied theropod dinosaurs. A new troodontid, Gobivenator mongoliensis gen. et sp. nov., is described based on the most complete skeleton of a Late Cretaceous member of this clade presently known, from the Campanian Djadokhta Formation in the central Gobi Desert. G. mongoliensis is different from other troodontids in possessing a pointed anterior end of the fused parietal and a fossa on the surangular in front of the posterior surangular foramen. The skull was superbly preserved in the specimen and provides detailed information of the entire configuration of the palate in Troodontidae. Overall morphology of the palate in Gobivenator resembles those of dromaeosaurids and Archaeopteryx, showing an apparent trend of elongation of the pterygoid process of the palatine and reduction of the pterygopalatine suture toward the basal Avialae. The palatal configuration suggests that the skull of Gobivenator would have been akinetic but had already acquired prerequisites for later evolution of cranial kinesis in birds, such as the loss of the epipterygoid and reduction in contact areas among bones.

Concepts: Bird, Dinosaur, Theropoda, Dromaeosauridae, Troodontidae, Deinonychosauria, Anchiornis, Avialae