Discover the most talked about and latest scientific content & concepts.

Concept: Autonomic nervous system


Musical performance is a skilled activity performed under intense pressure, thus is often a profound source of anxiety. In other contexts, anxiety and its concomitant symptoms of sympathetic nervous system arousal have been successfully ameliorated with HRV biofeedback (HRV BF), a technique involving slow breathing which augments autonomic and emotional regulatory capacity. Objective: This randomised-controlled study explored the impact of a single 30-minute session of HRV BF on anxiety in response to a highly stressful music performance.

Concepts: Psychology, Brain, Autonomic nervous system, Sympathetic nervous system, Norepinephrine, Music, Parasympathetic nervous system


Chronic electronic (e) cigarette users have increased resting cardiac sympathetic nerve activity and increased susceptibility to oxidative stress. The purpose of the present study is to determine the role of nicotine versus non-nicotine constituents in e-cigarette emissions in causing these pathologies in otherwise healthy humans.

Concepts: Cigarette, Nicotine, Autonomic nervous system


Naturalistic environments have been demonstrated to promote relaxation and wellbeing. We assess opposing theoretical accounts for these effects through investigation of autonomic arousal and alterations of activation and functional connectivity within the default mode network (DMN) of the brain while participants listened to sounds from artificial and natural environments. We found no evidence for increased DMN activity in the naturalistic compared to artificial or control condition, however, seed based functional connectivity showed a shift from anterior to posterior midline functional coupling in the naturalistic condition. These changes were accompanied by an increase in peak high frequency heart rate variability, indicating an increase in parasympathetic activity in the naturalistic condition in line with the Stress Recovery Theory of nature exposure. Changes in heart rate and the peak high frequency were correlated with baseline functional connectivity within the DMN and baseline parasympathetic tone respectively, highlighting the importance of individual neural and autonomic differences in the response to nature exposure. Our findings may help explain reported health benefits of exposure to natural environments, through identification of alterations to autonomic activity and functional coupling within the DMN when listening to naturalistic sounds.

Concepts: Nervous system, Brain, Frequency, Autonomic nervous system, Sympathetic nervous system, Sound, Nature, Parasympathetic nervous system


Meditation is associated with positive health behaviors and improved cognitive control. One mechanism for the relationship between meditation and cognitive control is changes in activity of the anterior cingulate cortex-mediated neural pathways. The error-related negativity (ERN) and error positivity (Pe) components of the scalp-recorded event-related potential (ERP) represent cingulate-mediated functions of performance monitoring that may be modulated by mindfulness meditation. We utilized a flanker task, an experimental design, and a brief mindfulness intervention in a sample of 55 healthy non-meditators (n = 28 randomly assigned to the mindfulness group and n = 27 randomly assigned to the control group) to examine autonomic nervous system functions as measured by blood pressure and indices of cognitive control as measured by response times, error rates, post-error slowing, and the ERN and Pe components of the ERP. Systolic blood pressure significantly differentiated groups following the mindfulness intervention and following the flanker task. There were non-significant differences between the mindfulness and control groups for response times, post-error slowing, and error rates on the flanker task. Amplitude and latency of the ERN did not differ between groups; however, amplitude of the Pe was significantly smaller in individuals in the mindfulness group than in the control group. Findings suggest that a brief mindfulness intervention is associated with reduced autonomic arousal and decreased amplitude of the Pe, an ERP associated with error awareness, attention, and motivational salience, but does not alter amplitude of the ERN or behavioral performance. Implications for brief mindfulness interventions and state vs. trait affect theories of the ERN are discussed. Future research examining graded levels of mindfulness and tracking error awareness will clarify relationship between mindfulness and performance monitoring.

Concepts: Controlling for a variable, Scientific control, Nervous system, Scientific method, Psychology, Brain, Blood pressure, Autonomic nervous system


Assessment of anxiety symptoms in autism spectrum disorders (ASD) is a challenging task due to the symptom overlap between the two conditions as well as the difficulties in communication and awareness of emotions in ASD. This motivates the development of a physiological marker of anxiety in ASD that is independent of language and does not require observation of overt behaviour. In this study, we investigated the feasibility of using indicators of autonomic nervous system (ANS) activity for this purpose. Specially, the objectives of the study were to 1) examine whether or not anxiety causes significant measurable changes in indicators of ANS in an ASD population, and 2) characterize the pattern of these changes in ASD. We measured three physiological indicators of the autonomic nervous system response (heart rate, electrodermal activity, and skin temperature) during a baseline (movie watching) and anxiety condition (Stroop task) in a sample of typically developing children (n = 17) and children with ASD (n = 12). The anxiety condition caused significant changes in heart rate and electrodermal activity in both groups, however, a differential pattern of response was found between the two groups. In particular, the ASD group showed elevated heart rate during both baseline and anxiety conditions. Elevated and blunted phasic electrodermal activity were found in the ASD group during baseline and anxiety conditions, respectively. Finally, the ASD group did not show the typical decrease in skin temperature in response to anxiety. These results suggest that 1) signals of the autonomic nervous system may be used as indicators of anxiety in children with ASD, and 2) ASD may be associated with an atypical autonomic response to anxiety that is most consistent with sympathetic over-arousal and parasympathetic under-arousal.

Concepts: Psychology, Brain, Autism, Autonomic nervous system, Asperger syndrome, Sympathetic nervous system, Parasympathetic nervous system


BACKGROUND: Sympathetic nervous activity contributes to the maintenance of muscle oxygenation. However, patients with chronic pain may suffer from autonomic dysfunction. Furthermore, insufficient muscle oxygenation is observed among workers with chronic neck and shoulder pain. The aim of our study was to investigate how muscle load tasks affect sympathetic nervous activity and changes in oxygenation of the trapezius muscles in subjects with chronic neck and shoulder pain. METHODS: Thirty females were assigned to two groups: a pain group consisting of subjects with chronic neck and shoulder pain and a control group consisting of asymptomatic subjects. The participants performed three sets of isometric exercise in an upright position; they contracted their trapezius muscles with maximum effort and let the muscles relax (Relax). Autonomic nervous activity and oxygenation of the trapezius muscles were measured by heart rate variability (HRV) and Near-Infrared Spectroscopy. RESULTS: Oxyhemoglobin and total hemoglobin of the trapezius muscles in the pain group were lower during the Relax period compared with the control group. In addition, the low frequency / high frequency (LF/HF) ratio of HRV significantly increased during isometric exercise in the control group, whereas there were no significant changes in the pain group. CONCLUSIONS: Subjects with neck and shoulder pain showed lower oxygenation and blood flow of the trapezius muscles responding to isometric exercise, compared with asymptomatic subjects. Subjects with neck and shoulder pain also showed no significant changes in the LF/HF ratio of HRV responding to isometric exercise, which would imply a reduction in sympathetic nervous activity.

Concepts: Energy, Muscle, Muscle contraction, Acetylcholine, Autonomic nervous system, Isometric exercise, Trapezius muscle, Clavicle


Imbalances of energy homeostasis are often associated with cardiovascular complications. Previous work has shown that Gnasxl deficient mice have a lean and hypermetabolic phenotype with increased sympathetic stimulation of adipose tissue. The Gnasxl transcript from the imprinted Gnas locus encodes the trimeric G-protein subunit XLαs, which is expressed in brain regions that regulate energy homeostasis and sympathetic nervous system (SNS) activity. To determine whether Gnasxl knock-out (KO) mice display additional SNS related phenotypes, we have now investigated the cardiovascular system. Gnasxl KO mice were ≈20 mmHg hypertensive compared to wild-type (WT) littermates (p≤0.05) and hypersensitive to the sympatholytic drug reserpine. Using telemetry, we detected an increased waking heart rate (HR) in conscious KOs (630±10 vs 584±12 bpm, KO vs WT, p≤0.05). Body temperature was also elevated (38.1±0.3 vs 36.9±0.4 °C, KO vs WT, p≤0.05). To investigate autonomic nervous system influences, we used heart rate variability (HRV) analyses. We empirically defined frequency power bands using atropine and reserpine and verified high frequency (HF) power and low frequency (LF) LF/HF power ratio to be indicators of parasympathetic and sympathetic activity, respectively. LF/HF power ratio was greater in KOs and more sensitive to reserpine than in WTs, consistent with elevated SNS activity. By contrast, atropine and exendin-4 (Ex-4), a centrally acting agonist of the glucagon-like peptide-1 (GLP-1) receptor, which influences cardiovascular physiology and metabolism, reduced HF power equally in both genotypes. This was associated with a stronger increase in HR in KOs. Mild stress had a blunted effect on LF/HF ratio in KOs consistent with elevated basic sympathetic activity. We conclude that XLαs is required for the inhibition of sympathetic outflow towards cardiovascular and metabolically relevant tissues.

Concepts: Gene, Blood, Physiology, Acetylcholine, Autonomic nervous system, Sympathetic nervous system, Parasympathetic nervous system, Enteric nervous system


A mild traumatic brain injury (mTBI) is a complex pathophysiologic process that has a systemic effect on the body aside from solely an impairment in cognitive function. Dysfunction of the autonomic nervous system (ANS) has been found to induce abnormalities in organ systems throughout the body, and may contribute to cardiovascular dysregulation and increased mortality. Autonomic dysfunction, also known as dysautonomia, has been studied in moderate and severe TBI, and has emerged as a major contributing factor in the symptomatology in mTBI as well. Analysis of the ANS has been studied through changes in heart rate variability (HRV), pupillary dynamics, eye pressure, and arterial pulse wave in those with mild TBI. Graded exercise testing has been studied as both a method of diagnosis and as a means of recovery in those with mild TBI, especially in those with persistent symptoms. Given the studies showing persistence of autonomic dysfunction after symptomatic resolution of concussions, further research is needed to establish return to play protocols.

Concepts: Psychology, Brain, Heart, Traumatic brain injury, Axon, Autonomic nervous system, Post-concussion syndrome, Concussion


An unusual, but common, aversion to images with clusters of holes is known as trypophobia. Recent research suggests that trypophobic reactions are caused by visual spectral properties also present in aversive images of evolutionary threatening animals (e.g., snakes and spiders). However, despite similar spectral properties, it remains unknown whether there is a shared emotional response to holes and threatening animals. Whereas snakes and spiders are known to elicit a fear reaction, associated with the sympathetic nervous system, anecdotal reports from self-described trypophobes suggest reactions more consistent with disgust, which is associated with activation of the parasympathetic nervous system. Here we used pupillometry in a novel attempt to uncover the distinct emotional response associated with a trypophobic response to holes. Across two experiments, images of holes elicited greater constriction compared to images of threatening animals and neutral images. Moreover, this effect held when controlling for level of arousal and accounting for the pupil grating response. This pattern of pupillary response is consistent with involvement of the parasympathetic nervous system and suggests a disgust, not a fear, response to images of holes. Although general aversion may be rooted in shared visual-spectral properties, we propose that the specific emotion is determined by cognitive appraisal of the distinct image content.

Concepts: Nervous system, Psychology, Insect, Autonomic nervous system, Sympathetic nervous system, Emotion, Parasympathetic nervous system


Misophonia is a relatively unexplored chronic condition in which a person experiences autonomic arousal (analogous to an involuntary “fight-or-flight” response) to certain innocuous or repetitive sounds such as chewing, pen clicking, and lip smacking. Misophonics report anxiety, panic, and rage when exposed to trigger sounds, compromising their ability to complete everyday tasks and engage in healthy and normal social interactions. Across two experiments, we measured behavioral and physiological characteristics of the condition. Interviews (Experiment 1) with misophonics showed that the most problematic sounds are generally related to other people’s behavior (pen clicking, chewing sounds). Misophonics are however not bothered when they produce these “trigger” sounds themselves, and some report mimicry as a coping strategy. Next, (Experiment 2) we tested the hypothesis that misophonics' subjective experiences evoke an anomalous physiological response to certain auditory stimuli. Misophonic individuals showed heightened ratings and skin conductance responses (SCRs) to auditory, but not visual stimuli, relative to a group of typically developed controls, supporting this general viewpoint and indicating that misophonia is a disorder that produces distinct autonomic effects not seen in typically developed individuals.

Concepts: Psychology, Person, Empiricism, Experiment, Hypothesis, Autonomic nervous system, Behavior, Human behavior