SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Aurora kinase

167

Aurora kinase A (AURKA) localizes to centrosomes and mitotic spindles where it mediates mitotic progression and chromosomal stability. Overexpression of AURKA is common in cancer, resulting in acquisition of alternate non-mitotic functions. In the current study, we identified a novel role for AURKA in regulating ovarian cancer cell dissemination and evaluated the efficacy of an AURKA-selective small molecule inhibitor, alisertib (MLN8237), as a single agent and combined with paclitaxel using an orthotopic xenograft model of epithelial ovarian cancer (EOC). Ovarian carcinoma cell lines were used to evaluate the effects of AURKA inhibition and overexpression on migration and adhesion. Pharmacological or RNA interference-mediated inhibition of AURKA significantly reduced ovarian carcinoma cell migration and adhesion and the activation-associated phosphorylation of the cytoskeletal regulatory protein SRC at tyrosine 416 (pSRC(Y416)). Conversely, enforced expression of AURKA resulted in increased migration, adhesion and activation of SRC in cultured cells. In vivo tumor growth and dissemination were inhibited by alisertib treatment as a single agent. Moreover, combination of alisertib with paclitaxel, an agent commonly used in treatment of EOC, resulted in more potent inhibition of tumor growth and dissemination compared with either drug alone. Taken together, these findings support a role for AURKA in EOC dissemination by regulating migration and adhesion. They also point to the potential utility of combining AURKA inhibitors with taxanes as a therapeutic strategy for the treatment of EOC patients.Oncogene advance online publication, 21 January 2013; doi:10.1038/onc.2012.632.

Concepts: Gene expression, Cancer, Hereditary nonpolyposis colorectal cancer, BRCA2, Enzyme inhibitor, Mitosis, BRCA1, Aurora kinase

166

The correct assembly and timely disassembly of the mitotic spindle is crucial for the propagation of the genome during cell division. Aurora kinases play a central role in orchestrating bipolar spindle establishment, chromosome alignment and segregation. In most eukaryotes, ranging from amoebas to humans, Aurora activity appears to be required both at the spindle pole and the kinetochore, and these activities are often split between two different Aurora paralogues, termed Aurora A and B. Polar and equatorial functions of Aurora kinases have generally been considered separately, with Aurora A being mostly involved in centrosome dynamics, whereas Aurora B coordinates kinetochore attachment and cytokinesis. However, double inactivation of both Aurora A and B results in a dramatic synergy that abolishes chromosome segregation. This suggests that these two activities jointly coordinate mitotic progression. Accordingly, recent evidence suggests that Aurora A and B work together in both spindle assembly in metaphase and disassembly in anaphase. Here, we provide an outlook on these shared functions of the Auroras, discuss the evolution of this family of mitotic kinases and speculate why Aurora kinase activity may be required at both ends of the spindle microtubules.

Concepts: Cell, Eukaryote, Chromosome, Cell cycle, Mitosis, Aurora kinase, Motor protein, Spindle apparatus

142

In cancer, upregulated Ras promotes cellular transformation and proliferation in part through activation of oncogenic Ras-MAPK signaling. While directly inhibiting Ras has proven challenging, new insights into Ras regulation through protein-protein interactions may offer unique opportunities for therapeutic intervention. Here we report the identification and validation of Aurora kinase A (Aurora A) as a novel Ras binding protein. We demonstrate that the kinase domain of Aurora A mediates the interaction with the N-terminal domain of H-Ras. Further more, the interaction of Aurora A and H-Ras exists in a protein complex with Raf-1. We show that binding of H-Ras to Raf-1 and subsequent MAPK signaling is enhanced by Aurora A, and requires active H-Ras. Thus, the functional linkage between Aurora A and the H-Ras/Raf-1 protein complex may provide a mechanism for Aurora A’s oncogenic activity through direct activation of the Ras/MAPK pathway.

Concepts: Protein, Protein structure, Signal transduction, MAPK/ERK pathway, Aurora kinase, Aurora A kinase, C-terminus, N-terminus

28

Novel therapies are urgently needed to improve clinical outcomes for patients with acute myeloid leukemia (AML). The investigational drug alisertib (MLN8237) is a novel Aurora A kinase inhibitor being studied in multiple Phase I and II studies. We investigated the preclinical efficacy and pharmacodynamics of alisertib in AML cell lines, primary AML cells and mouse models of AML. Here, we report that alisertib disrupted cell viability, diminished clonogenic survival, induced expression of the FOXO3a targets p27 and BIM and triggered apoptosis. A link between Aurora A expression and sensitivity to ara-C was established, suggesting that Aurora A inhibition may be a promising strategy to increase the efficacy of ara-C. Accordingly, alisertib significantly potentiated the antileukemic activity of ara-C in both AML cell lines and primary blasts. Targeted FOXO3a knockdown significantly blunted the pro-apoptotic effects of the alisertib/ara-C combination, indicating that it is an important regulator of sensitivity to these agents. In vivo studies demonstrated that alisertib significantly augmented the efficacy of ara-C without affecting its pharmacokinetic profile and led to the induction of p27 and BIM. Our collective data indicate that targeting Aurora A with alisertib represents a novel approach to increase the efficacy of ara-C that warrants further investigation.

Concepts: In vivo, Leukemia, Acute myeloid leukemia, Pharmacokinetics, Aurora kinase, Cytarabine, Pharmacodynamics, Investigational New Drug

28

The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our study implicates five networks of kinases that regulate the switch to polyploidy. Moreover, we find that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. An integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora kinase A (AURKA). We further find that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in acute megakaryocytic leukemia (AMKL) blasts and displayed potent anti-AMKL activity in vivo. Our findings provide a rationale to support clinical trials of MLN8237 and other inducers of polyploidization and differentiation in AMKL.

Concepts: Protein, Cancer, Signal transduction, Leukemia, P53, Aurora kinase, Aurora A kinase, Induced demand

24

The catalytic activity of many protein kinases is controlled by conformational changes of a conserved Asp-Phe-Gly (DFG) motif. We used an infrared probe to track the DFG motif of the mitotic kinase Aurora A (AurA) and found that allosteric activation by the spindle-associated protein Tpx2 involves an equilibrium shift toward the active DFG-in state. Förster resonance energy transfer experiments show that the activation loop undergoes a nanometer-scale movement that is tightly coupled to the DFG equilibrium. Tpx2 further activates AurA by stabilizing a water-mediated allosteric network that links the C-helix to the active site through an unusual polar residue in the regulatory spine. The polar spine residue and water network of AurA are essential for phosphorylation-driven activation, but an alternative form of the water network found in related kinases can support Tpx2-driven activation, suggesting that variations in the water-mediated hydrogen bond network mediate regulatory diversification in protein kinases.

Concepts: Signal transduction, Metabolism, Enzyme, Hydrogen, Catalysis, Nitrogen, Aurora kinase, Aurora A kinase

15

Fewer than half of children with high-risk neuroblastoma survive. Many of these tumors harbor high-level amplification of MYCN, which correlates with poor disease outcome. Using data from our large drug screen we predicted, and subsequently demonstrated, that MYCN-amplified neuroblastomas are sensitive to the BCL-2 inhibitor ABT-199. This sensitivity occurs in part through low anti-apoptotic BCL-xL expression, high pro-apoptotic NOXA expression, and paradoxical, MYCN-driven upregulation of NOXA. Screening for enhancers of ABT-199 sensitivity in MYCN-amplified neuroblastomas, we demonstrate that the Aurora Kinase A inhibitor MLN8237 combines with ABT-199 to induce widespread apoptosis. In diverse models of MYCN-amplified neuroblastoma, including a patient-derived xenograft model, this combination uniformly induced tumor shrinkage, and in multiple instances led to complete tumor regression.

Concepts: Cancer, Oncology, Apoptosis, Programmed cell death, Aurora kinase, Bcl-2, BH3 interacting domain death agonist, Bcl-2-associated X protein

8

Aurora A kinase (AAK) is upregulated in highly proliferative lymphomas, suggesting its potential as a therapeutic target. Alisertib is a novel oral AAK inhibitor without adverse safety signals in early-phase studies that demonstrated preliminary activity in T-cell lymphoma. This phase II study was conducted to further investigate the efficacy of alisertib in relapsed or refractory peripheral T-cell non-Hodgkin lymphoma (PTCL).

Concepts: Types of cancer, Lymphoma, Hodgkin's lymphoma, Aurora kinase, Aurora A kinase, Mycosis fungoides, Non-Hodgkin lymphoma, T-cell lymphoma

3

Many eukaryotic protein kinases are activated by phosphorylation on a specific conserved residue in the regulatory activation loop, a post-translational modification thought to stabilize the active DFG-In state of the catalytic domain. Here we use a battery of spectroscopic methods that track different catalytic elements of the kinase domain to show that the ~100-fold activation of the mitotic kinase Aurora A (AurA) by phosphorylation occurs without a population shift from the DFG-Out to the DFG-In state, and that the activation loop of the activated kinase remains highly dynamic. Instead, molecular dynamics simulations and electron paramagnetic resonance experiments show that phosphorylation triggers a switch within the DFG-In subpopulation from an autoinhibited DFG-In substate to an active DFG-In substate, leading to catalytic activation. This mechanism raises new questions about the functional role of the DFG-Out state in protein kinases.

Concepts: Signal transduction, Adenosine triphosphate, Enzyme, Kinase, Protein kinase, Phosphorylation, Aurora kinase, Aurora A kinase

3

Aurora Kinase A (AURKA) is commonly overexpressed in sarcoma. Inhibition of AURKA by shRNA or by a specific AURKA inhibitor blocks in vitro proliferation of multiple sarcoma subtypes. MLN8237 (alisertib) is a novel oral ATP-competitive AURKA inhibitor.

Concepts: In vitro, Inhibitor, Aurora kinase, Aurora A kinase