SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Attribution of recent climate change

792

What we eat greatly influences our personal health and the environment we all share. Recent analyses have highlighted the likely dual health and environmental benefits of reducing the fraction of animal-sourced foods in our diets. Here, we couple for the first time, to our knowledge, a region-specific global health model based on dietary and weight-related risk factors with emissions accounting and economic valuation modules to quantify the linked health and environmental consequences of dietary changes. We find that the impacts of dietary changes toward less meat and more plant-based diets vary greatly among regions. The largest absolute environmental and health benefits result from diet shifts in developing countries whereas Western high-income and middle-income countries gain most in per capita terms. Transitioning toward more plant-based diets that are in line with standard dietary guidelines could reduce global mortality by 6-10% and food-related greenhouse gas emissions by 29-70% compared with a reference scenario in 2050. We find that the monetized value of the improvements in health would be comparable with, or exceed, the value of the environmental benefits although the exact valuation method used considerably affects the estimated amounts. Overall, we estimate the economic benefits of improving diets to be 1-31 trillion US dollars, which is equivalent to 0.4-13% of global gross domestic product (GDP) in 2050. However, significant changes in the global food system would be necessary for regional diets to match the dietary patterns studied here.

Concepts: Health care, Carbon dioxide, Nutrition, Value added, Climate change, Gross domestic product, Greenhouse gas, Attribution of recent climate change

181

Megadroughts are comparable in severity to the worst droughts of the 20th century but are of much longer duration. A megadrought in the American Southwest would impose unprecedented stress on the limited water resources of the area, making it critical to evaluate future risks not only under different climate change mitigation scenarios but also for different aspects of regional hydroclimate. We find that changes in the mean hydroclimate state, rather than its variability, determine megadrought risk in the American Southwest. Estimates of megadrought probabilities based on precipitation alone tend to underestimate risk. Furthermore, business-as-usual emissions of greenhouse gases will drive regional warming and drying, regardless of large precipitation uncertainties. We find that regional temperature increases alone push megadrought risk above 70, 90, or 99% by the end of the century, even if precipitation increases moderately, does not change, or decreases, respectively. Although each possibility is supported by some climate model simulations, the latter is the most common outcome for the American Southwest in Coupled Model Intercomparison 5 generation models. An aggressive reduction in global greenhouse gas emissions cuts megadrought risks nearly in half.

Concepts: Carbon dioxide, Climate, Climate change, Water vapor, Natural gas, Greenhouse gas, Global warming, Attribution of recent climate change

139

Countries export much of the harm created by their greenhouse gas (GHG) emissions because the Earth’s atmosphere intermixes globally. Yet, the extent to which this leads to inequity between GHG emitters and those impacted by the resulting climate change depends on the distribution of climate vulnerability. Here, we determine empirically the relationship between countries' GHG emissions and their vulnerability to negative effects of climate change. In line with the results of other studies, we find an enormous global inequality where 20 of the 36 highest emitting countries are among the least vulnerable to negative impacts of future climate change. Conversely, 11 of the 17 countries with low or moderate GHG emissions, are acutely vulnerable to negative impacts of climate change. In 2010, only 28 (16%) countries had an equitable balance between emissions and vulnerability. Moreover, future emissions scenarios show that this inequality will significantly worsen by 2030. Many countries are manifestly free riders causing others to bear a climate change burden, which acts as a disincentive for them to mitigate their emissions. It is time that this persistent and worsening climate inequity is resolved, and for the largest emitting countries to act on their commitment of common but differentiated responsibilities.

Concepts: Carbon dioxide, Earth, Climate change, Atmosphere, Natural gas, Greenhouse gas, Ozone, Attribution of recent climate change

122

Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century’s observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28-56 cm, 37-77 cm, and 57-131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The “constrained extrapolation” approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections.

Concepts: Carbon dioxide, Climate change, Ocean, 21st century, Intergovernmental Panel on Climate Change, Greenhouse gas, Global warming, Attribution of recent climate change

64

Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

Concepts: Earth, Climate, Climate change, Intergovernmental Panel on Climate Change, Solar variation, Global warming, Anthropogenic, Attribution of recent climate change

46

The aggregate potential for urban mitigation of global climate change is insufficiently understood. Our analysis, using a dataset of 274 cities representing all city sizes and regions worldwide, demonstrates that economic activity, transport costs, geographic factors, and urban form explain 37% of urban direct energy use and 88% of urban transport energy use. If current trends in urban expansion continue, urban energy use will increase more than threefold, from 240 EJ in 2005 to 730 EJ in 2050. Our model shows that urban planning and transport policies can limit the future increase in urban energy use to 540 EJ in 2050 and contribute to mitigating climate change. However, effective policies for reducing urban greenhouse gas emissions differ with city type. The results show that, for affluent and mature cities, higher gasoline prices combined with compact urban form can result in savings in both residential and transport energy use. In contrast, for developing-country cities with emerging or nascent infrastructures, compact urban form, and transport planning can encourage higher population densities and subsequently avoid lock-in of high carbon emission patterns for travel. The results underscore a significant potential urbanization wedge for reducing energy use in rapidly urbanizing Asia, Africa, and the Middle East.

Concepts: Carbon dioxide, Weather, City, Climate change, Natural gas, Greenhouse gas, Global warming, Attribution of recent climate change

26

Several studies have estimated the burden of coronary heart disease (CHD) mortality from ambient regional particulate matter <2.5µm (PM2.5). The burden of near-roadway air pollution (NRAP) generally has not been examined, despite evidence of a causal link with CHD. We investigated the CHD burden from NRAP and compared it with the PM2.5 burden in the California South Coast Air Basin for 2008 and under a compact urban growth greenhouse gas reduction scenario for 2035.

Concepts: Carbon dioxide, United States Environmental Protection Agency, Particulate, Smog, Natural gas, Air pollution, Dust, Attribution of recent climate change

17

Within the context of anthropogenic climate change, but also considering the Earth’s natural climate variability, this paper explores the speculative possibility of large-scale active control of the Earth’s radiative forcing. In particular, the paper revisits the concept of deploying a large sunshade or occulting disk at a static position near the Sun-Earth L1 Lagrange equilibrium point. Among the solar radiation management methods that have been proposed thus far, space-based concepts are generally seen as the least timely, albeit also as one of the most efficient. Large occulting structures could potentially offset all of the global mean temperature increase due to greenhouse gas emissions. This paper investigates optimal configurations of orbiting occulting disks that not only offset a global temperature increase, but also mitigate regional differences such as latitudinal and seasonal difference of monthly mean temperature. A globally resolved energy balance model is used to provide insights into the coupling between the motion of the occulting disks and the Earth’s climate. This allows us to revise previous studies, but also, for the first time, to search for families of orbits that improve the efficiency of occulting disks at offsetting climate change on both global and regional scales. Although natural orbits exist near the L1 equilibrium point, their period does not match that required for geoengineering purposes, thus forced orbits were designed that require small changes to the disk attitude in order to control its motion. Finally, configurations of two occulting disks are presented which provide the same shading area as previously published studies, but achieve reductions of residual latitudinal and seasonal temperature changes.

Concepts: Earth, Climate, Weather, Climate change, Solar variation, Greenhouse gas, Global warming, Attribution of recent climate change

13

This article builds on the premise that human consumption of goods, food and transport are the ultimate drivers of climate change. However, the nature of the climate change problem (well described as a tragedy of the commons) makes it difficult for individuals to recognise their personal duty to implement behavioural changes to reduce greenhouse gas emissions. Consequently, this article aims to analyse the climate change issue from a human-scale perspective, in which each of us has a clearly defined personal quota of CO2 emissions that limits our activity and there is a finite time during which CO2 emissions must be eliminated to achieve the “well below 2°C” warming limit set by the Paris Agreement of 2015 (COP21). Thus, this work’s primary contribution is to connect an equal per capita fairness approach to a global carbon budget, linking personal levels with planetary levels. Here, we show that a personal quota of 5.0 tons of CO2 yr-1 p-1 is a representative value for both past and future emissions; for this level of a constant per-capita emissions and without considering any mitigation, the global accumulated emissions compatible with the “well below 2°C” and 2°C targets will be exhausted by 2030 and 2050, respectively. These are references years that provide an order of magnitude of the time that is left to reverse the global warming trend. More realistic scenarios that consider a smooth transition toward a zero-emission world show that the global accumulated emissions compatible with the “well below 2°C” and 2°C targets will be exhausted by 2040 and 2080, respectively. Implications of this paper include a return to personal responsibility following equity principles among individuals, and a definition of boundaries to the personal emissions of CO2.

Concepts: Carbon dioxide, Climate change, Methane, Greenhouse gas, Emission standard, Carbon cycle, Global warming, Attribution of recent climate change

11

For more than a decade, the target of keeping global warming below 2 °C has been a key focus of the international climate debate. In response, the scientific community has published a number of scenario studies that estimate the costs of achieving such a target. Producing these estimates remains a challenge, particularly because of relatively well known, but poorly quantified, uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on the one hand, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other hand, has spent years improving its understanding of the geophysical response of the Earth system to emissions of greenhouse gases. This geophysical response remains a key uncertainty in the cost of mitigation scenarios but has been integrated with assessments of other uncertainties in only a rudimentary manner, that is, for equilibrium conditions. Here we bridge this gap between the two research communities by generating distributions of the costs associated with limiting transient global temperature increase to below specific values, taking into account uncertainties in four factors: geophysical, technological, social and political. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by geophysical uncertainties, social factors influencing future energy demand and, lastly, technological uncertainties surrounding the availability of greenhouse gas mitigation options. Our information on temperature risk and mitigation costs provides crucial information for policy-making, because it clarifies the relative importance of mitigation costs, energy demand and the timing of global action in reducing the risk of exceeding a global temperature increase of 2 °C, or other limits such as 3 °C or 1.5 °C, across a wide range of scenarios.

Concepts: Carbon dioxide, Earth, Climate, Climate change, Natural gas, Greenhouse gas, Global warming, Attribution of recent climate change