### Concept: Attractor

#### 28

##### The important roles of tissue anisotropy and tissue-to-tissue contact on the dynamical behavior of a symmetric tri-leaflet valve during multiple cardiac pressure cycles

- Medical engineering & physics
- Published over 6 years ago
- Discuss

Restricting our scope to the dynamical motion of the leaflets, we present a computational model for a symmetric, tri-leaflet, bioprosthetic heart valve (BHV) at the end of five complete cardiac pressure cycles, reaching the steady state of deformation during both closing and opening phases. To this end, we utilized a highly anisotropic material model for the large deformation behavior of the tissue material, for which an experimental validation was provided. The important findings are: (1) material anisotropy has significant effect on the valve opening/closing; (2) the asymmetric deformations, especially in the fully closed configuration, justify the use of cyclic symmetry; (3) adopting the fully-open position as an initial/reference configuration has the advantage of completely bypassing any complications arising from the need to assume the size and shape of the contact area in the coaptation regions of the leaflets that is necessary when the alternative, commonly-used, approach of selecting the fully-closed position is used as a reference; and (4) with proper treatments for both material anisotropy and tissue-to-tissue contact, the overall BHV model provide realistic results in conformity with the ex vivo/in vitro experiments.

#### 27

##### Absolute stability and dynamical stabilisation in predator-prey systems

- Journal of mathematical biology
- Published over 5 years ago
- Discuss

Many ecological systems exhibit multi-year cycles. In such systems, invasions have a complicated spatiotemporal structure. In particular, it is common for unstable steady states to exist as long-term transients behind the invasion front, a phenomenon known as dynamical stabilisation. We combine absolute stability theory and computation to predict how the width of the stabilised region depends on parameter values. We develop our calculations in the context of a model for a cyclic predator-prey system, in which the invasion front and spatiotemporal oscillations of predators and prey are separated by a region in which the coexistence steady state is dynamically stabilised.

#### 9

We review various existing models of hepatitis C virus (HCV) infection and show that there are inconsistencies between the models and known behaviour of the infection. A new model for HCV infection is proposed, based on various dynamical processes that occur during the infection that are described in the literature. This new model is analysed, and three steady state branches of solutions are found when there is no stem cell generation of hepatocytes. Unusually, the branch of infected solutions that connects the uninfected branch and the pure infection branch can be found analytically and always includes a limit point, subject to a few conditions on the parameters. When the action of stem cells is included, the bifurcation between the pure infection and infected branches unfolds, leaving a single branch of infected solutions. It is shown that this model can generate various viral load profiles that have been described in the literature, which is confirmed by fitting the model to four viral load datasets. Suggestions for possible changes in treatment are made based on the model.

#### 4

##### Detecting abnormality in heart dynamics from multifractal analysis of ECG signals

- OPEN
- Scientific reports
- Published 8 months ago
- Discuss

The characterization of heart dynamics with a view to distinguish abnormal from normal behavior is an interesting topic in clinical sciences. Here we present an analysis of the Electro-cardiogram (ECG) signals from several healthy and unhealthy subjects using the framework of dynamical systems approach to multifractal analysis. Our analysis differs from the conventional nonlinear analysis in that the information contained in the amplitude variations of the signal is being extracted and quantified. The results thus obtained reveal that the attractor underlying the dynamics of the heart has multifractal structure and the variations in the resultant multifractal spectra can clearly separate healthy subjects from unhealthy ones. We use supervised machine learning approach to build a model that predicts the group label of a new subject with very high accuracy on the basis of the multifractal parameters. By comparing the computed indices in the multifractal spectra with that of beat replicated data from the same ECG, we show how each ECG can be checked for variations within itself. The increased variability observed in the measures for the unhealthy cases can be a clinically meaningful index for detecting the abnormal dynamics of the heart.

#### 4

##### Haptic Feedback Enhances Rhythmic Motor Control By Reducing Variability, Not Convergence Rate

- Journal of neurophysiology
- Published over 4 years ago
- Discuss

Stability and performance during rhythmic motor behaviors such as locomotion are critical for survival across taxa: falling down would bode well for neither cheetah nor gazelle. Little is known about how haptic feedback, particularly during discrete events such as the heel-strike event during walking, enhances rhythmic behavior. To determine the effect of haptic cues on rhythmic motor performance, we investigated a virtual paddle juggling behavior, analogous to bouncing a table tennis ball on a paddle. Here, we show that a force impulse to the hand at the moment of ball-paddle collision categorically improves performance over visual feedback alone, not by regulating the rate of convergence to steady state (e.g. via higher gain feedback or modifying the steady-state hand motion), but rather by reducing cycle-to-cycle variability. This suggests that the timing and state cues afforded by haptic feedback decreases the nervous system’s uncertainty of the ball’s state to enable more accurate control, but that the feedback gain itself is unaltered. This decrease in variability leads to a substantial increase in the mean first passage time, a measure of the long-term metastability of a stochastic dynamical system. Rhythmic tasks such as locomotion and juggling involve intermittent contact with the environment (i.e. hybrid transitions), and the timing of such transitions is generally easy to sense via haptic feedback. This timing information may improve metastability, equating to less frequent falls or other failures depending on the task.

#### 3

##### The prevalence of chaotic dynamics in games with many players

- OPEN
- Scientific reports
- Published 4 months ago
- Discuss

We study adaptive learning in a typical p-player game. The payoffs of the games are randomly generated and then held fixed. The strategies of the players evolve through time as the players learn. The trajectories in the strategy space display a range of qualitatively different behaviours, with attractors that include unique fixed points, multiple fixed points, limit cycles and chaos. In the limit where the game is complicated, in the sense that the players can take many possible actions, we use a generating-functional approach to establish the parameter range in which learning dynamics converge to a stable fixed point. The size of this region goes to zero as the number of players goes to infinity, suggesting that complex non-equilibrium behaviour, exemplified by chaos, is the norm for complicated games with many players.

#### 2

##### Scale-dependent erosional patterns in steady-state and transient-state landscapes

- OPEN
- Science advances
- Published 10 months ago
- Discuss

Landscape topography is the expression of the dynamic equilibrium between external forcings (for example, climate and tectonics) and the underlying lithology. The magnitude and spatial arrangement of erosional and depositional fluxes dictate the evolution of landforms during both statistical steady state (SS) and transient state (TS) of major landscape reorganization. For SS landscapes, the common expectation is that any point of the landscape has an equal chance to erode below or above the landscape median erosion rate. We show that this is not the case. Afforded by a unique experimental landscape that provided a detailed space-time recording of erosional fluxes and by defining the so-called E50-area curve, we reveal for the first time that there exists a hierarchical pattern of erosion. Specifically, hillslopes and fluvial channels erode more rapidly than the landscape median erosion rate, whereas intervening parts of the landscape in terms of upstream contributing areas (colluvial regime) erode more slowly. We explain this apparent paradox by documenting the dynamic nature of SS landscapes-landscape locations may transition from being a hillslope to being a valley and then to being a fluvial channel due to ridge migration, channel piracy, and small-scale landscape dynamics through time. Under TS conditions caused by increased precipitation, we show that the E50-area curve drastically changes shape during landscape reorganization. Scale-dependent erosional patterns, as observed in this study, suggest benchmarks in evaluating numerical models and interpreting the variability of sampled erosional rates in field landscapes.

#### 2

##### A Robust Feedforward Model of the Olfactory System

- OPEN
- PLoS computational biology
- Published over 2 years ago
- Discuss

Most natural odors have sparse molecular composition. This makes the principles of compressed sensing potentially relevant to the structure of the olfactory code. Yet, the largely feedforward organization of the olfactory system precludes reconstruction using standard compressed sensing algorithms. To resolve this problem, recent theoretical work has shown that signal reconstruction could take place as a result of a low dimensional dynamical system converging to one of its attractor states. However, the dynamical aspects of optimization slowed down odor recognition and were also found to be susceptible to noise. Here we describe a feedforward model of the olfactory system that achieves both strong compression and fast reconstruction that is also robust to noise. A key feature of the proposed model is a specific relationship between how odors are represented at the glomeruli stage, which corresponds to a compression, and the connections from glomeruli to third-order neurons (neurons in the olfactory cortex of vertebrates or Kenyon cells in the mushroom body of insects), which in the model corresponds to reconstruction. We show that should this specific relationship hold true, the reconstruction will be both fast and robust to noise, and in particular to the false activation of glomeruli. The predicted connectivity rate from glomeruli to third-order neurons can be tested experimentally.

#### 2

##### Complex dynamics in learning complicated games

- Proceedings of the National Academy of Sciences of the United States of America
- Published over 5 years ago
- Discuss

Game theory is the standard tool used to model strategic interactions in evolutionary biology and social science. Traditionally, game theory studies the equilibria of simple games. However, is this useful if the game is complicated, and if not, what is? We define a complicated game as one with many possible moves, and therefore many possible payoffs conditional on those moves. We investigate two-person games in which the players learn based on a type of reinforcement learning called experience-weighted attraction (EWA). By generating games at random, we characterize the learning dynamics under EWA and show that there are three clearly separated regimes: (i) convergence to a unique fixed point, (ii) a huge multiplicity of stable fixed points, and (iii) chaotic behavior. In case (iii), the dimension of the chaotic attractors can be very high, implying that the learning dynamics are effectively random. In the chaotic regime, the total payoffs fluctuate intermittently, showing bursts of rapid change punctuated by periods of quiescence, with heavy tails similar to what is observed in fluid turbulence and financial markets. Our results suggest that, at least for some learning algorithms, there is a large parameter regime for which complicated strategic interactions generate inherently unpredictable behavior that is best described in the language of dynamical systems theory.

#### 1

##### Chaotic Dynamics of Inner Ear Hair Cells

- OPEN
- Scientific reports
- Published 5 months ago
- Discuss

Experimental records of active bundle motility are used to demonstrate the presence of a low-dimensional chaotic attractor in hair cell dynamics. Dimensionality tests from dynamic systems theory are applied to estimate the number of independent variables sufficient for modelling the hair cell response. PoincarĂ© maps are constructed to observe a quasiperiodic transition from chaos to order with increasing amplitudes of mechanical forcing. The onset of this transition is accompanied by a reduction of Kolmogorov entropy in the system and an increase in transfer entropy between the stimulus and the hair bundle, indicative of signal detection. A simple theoretical model is used to describe the observed chaotic dynamics. The model exhibits an enhancement of sensitivity to weak stimuli when the system is poised in the chaotic regime. We propose that chaos may play a role in the hair cell’s ability to detect low-amplitude sounds.