Discover the most talked about and latest scientific content & concepts.

Concept: Atomic orbital


Size-controlled and monodispersed silver nanoparticles were synthesized from an aqueous solution containing silver nitrate as a metal precursor, polyvinyl alcohol as a capping agent, isopropyl alcohol as hydrogen and hydroxyl radical scavengers, and deionized water as a solvent with a simple radiolytic method. The average particle size decreased with an increase in dose due to the domination of nucleation over ion association in the formation of the nanoparticles by gamma reduction. The silver nanoparticles exhibit a very sharp and strong absorption spectrum with the absorption maximum λmax blue shifting with an increased dose, owing to a decrease in particle size. The absorption spectra of silver nanoparticles of various particle sizes were also calculated using a quantum physics treatment and an agreement was obtained with the experimental absorption data. The results suggest that the absorption spectrum of silver nanoparticles possibly derived from the intra-band excitations of conduction electrons from the lowest energy state (n = 5, l = 0) to higher energy states (n ≥ 6; Δl = 0, ±1; Δs = 0, ±1), allowed by the quantum numbers principle. This demonstrates that the absorption phenomenon of metal nanoparticles based on a quantum physics description could be exploited to be added into the fundamentals of metal nanoparticles and the related fields of nanoscience and nanotechnology.

Concepts: Alcohol, Photon, Energy, Quantum mechanics, Chemistry, Atom, Nanotechnology, Atomic orbital


Recent studies of II-VI group colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD-molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a III-V group semiconductor) and InP/CdS core/shell (a heterostructure beween III-V and II-VI group semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP-methylviologen (MV2+) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV2+ from the 1S electron level (with a average time constant of 11.4 ps) as well as 1P and higher electron level (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS MV2+ complexes shows similar ultrafast charge separation and 5 fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of III-V and II-VI group semiconductors provides a promising approach for optimizing their light harvesting and charge properties for solar energy conversion applications.

Concepts: Electron, Quantum mechanics, Fundamental physics concepts, Semiconductor, Solar cell, Band gap, Atomic orbital, Semiconductors


Solid state (13)C and (15)N chemical shifts of uracil and imidazole have been calculated using a 2-layer ONIOM approach at 32 levels of theory. The effect of electron correlation between two layers has been investigated by choosing two different kinds of layer selection. Factorial design has been applied as a multivariate technique to analyze the effect of wave function and layer selection on solid state (13)C and (15)N chemical shifts calculations. PBEPBE/6-311+G(d,p) was recommended as an optimally selected level of theory for high layer in both models. It is illustrated that considering the electron correlation of two layers of ONIOM models is important factor to calculate solid state (15)N chemical shifts. The agreement between the calculated and experimental values of solid state (13)C and (15)N chemical shifts using ONIOM (PBEPBE/6-311+G(d,p):AM1) for both uracil and imidazole confirmed the reliability of the selected wave functions and layer selection.

Concepts: Electron, Algorithm, Mathematics, Quantum mechanics, Fundamental physics concepts, Schrödinger equation, Calculation, Atomic orbital


Through first-principles computations, we investigated Li4NiTeO6, which is a new layered Ni-based cathode material for Li ion batteries, by focusing on the sequence of Li removal when it is charged. According to our computations, Li4NiTeO6 exhibits satisfactory structural stability with a volume change of 7.2% and electrical conductivity similar to Li2MnO3. We also examined the electronic configuration of this cathode material during its electrochemical progress and found a weak hybridization of Ni3d and O2p. Moreover, by analyzing the Bader charges of different elements, we confirmed that O and Ni are exclusively responsible for electron loss and gain. In addition, O evolution reactions occur when half of Li(+) ions are extracted. Finally, we investigated Li(+) migration paths and concluded that migration barriers depend on the charge distribution around migration paths.

Concepts: Electron, Cathode, Electric charge, Chemistry, Atom, Ion, Valence electron, Atomic orbital


Rational design of light-capturing properties requires understanding the molecular and electronic structure of chromophores in their native chemical or biological environment. We employ here large-scale quantum chemical calculations to study the light-capturing properties of retinal in recently designed human cellular retinol binding protein II (hCRBPII) variants (Wang et al. Science, 2012, 338, 1340-1343). Our calculations show that these proteins absorb across a large part of the visible spectrum by combined polarization and electrostatic effects. These effects stabilize the ground or excited state energy levels of the retinal by perturbing the Schiff-base or β-ionone moieties of the chromophore, which in turn modulates the amount of charge transfer within the molecule. Based on the predicted tuning principles, we design putative in silico mutations that further shift the absorption properties of retinal in hCRBPII towards the ultraviolet and infrared regions of the spectrum.

Concepts: DNA, Photon, Quantum mechanics, Electromagnetic radiation, Chemistry, Atom, Chemical bond, Atomic orbital


Despite being at the heart of chemical thought, the curly arrow notation of reaction mechanisms has been treated with suspicion-the connection with rigorous molecular quantum mechanics being unclear. The connection requires a view of the wavefunction that goes beyond molecular orbitals and rests on the most fundamental property of electrons. The antisymmetry of electronic wavefunctions requires that an N-electron wavefunction repeat itself in 3N dimensions, thus exhibiting tiles. Inspection of wavefunction tiles permits insight into structure and mechanism. Here, we demonstrate that analysis of the wavefunction tile along a reaction coordinate reveals the electron movements depicted by the curly arrow notation for several reactions. The Diels-Alder reaction is revealed to involve the separation and counter propagation of electron spins. This unprecedented method of extracting the movements of electrons during a chemical reaction is a breakthrough in connecting traditional depictions of chemical mechanism with state-of-the-art quantum chemical calculations.

Concepts: Electron, Quantum mechanics, Physics, Schrödinger equation, Chemistry, Quantum chemistry, Atomic orbital, Chemical reactions


We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x0, y0) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x0, y0) in the one-electron approximation. For near-resonant tunneling through an empty orbital “i” of the nanostructure, the SMA-STM signal is approximately proportional to the electron density φix0,y02of the excited orbital in the tunneling region. Thus, the SMA-STM signal is approximated by an orbital density map (ODM) of the resonantly excited orbital at energy Ei. The situation is more complex for correlated electron motion, but either way a slice through the excited electronic state structure in the tunneling region is imaged. We then show experimentally that we can nudge quantum dots on the surface and roll them, thus imaging excited state electronic structure of a single quantum dot at different orientations. We use density functional theory to model ODMs at various orientations, for qualitative comparison with the SMA-STM experiment. The model demonstrates that our experimentally observed signal monitors excited states, localized by defects near the surface of an individual quantum dot. The sub-nanometer super-resolution imaging technique demonstrated here could become useful for mapping out the three-dimensional structure of excited states localized by defects within nanomaterials.

Concepts: Electron, Quantum mechanics, Atom, Nanomaterials, Quantum chemistry, Electron configuration, Atomic orbital, Energy level


The ultrafast light-activated electrocyclic ring-opening reaction of 1,3-cyclohexadiene is a fundamental prototype of photochemical pericyclic reactions. Generally, these reactions are thought to proceed through an intermediate excited-state minimum (the so-called pericyclic minimum), which leads to isomerization via nonadiabatic relaxation to the ground state of the photoproduct. Here, we used femtosecond (fs) soft x-ray spectroscopy near the carbon K-edge (~284 electron volts) on a tabletop apparatus to directly reveal the valence electronic structure of this transient intermediate state. The core-to-valence spectroscopic signature of the pericyclic minimum observed in the experiment was characterized, in combination with time-dependent density functional theory calculations, to reveal overlap and mixing of the frontier valence orbital energy levels. We show that this transient valence electronic structure arises within 60 ± 20 fs after ultraviolet photoexcitation and decays with a time constant of 110 ± 60 fs.

Concepts: Electron, Spectroscopy, Light, Electromagnetic radiation, Density functional theory, Quantum chemistry, Physical chemistry, Atomic orbital


The coupling of electrons to matter lies at the heart of our understanding of material properties such as electrical conductivity. Electron-phonon coupling can lead to the formation of a Cooper pair out of two repelling electrons, which forms the basis for Bardeen-Cooper-Schrieffer superconductivity. Here we study the interaction of a single localized electron with a Bose-Einstein condensate and show that the electron can excite phonons and eventually trigger a collective oscillation of the whole condensate. We find that the coupling is surprisingly strong compared to that of ionic impurities, owing to the more favourable mass ratio. The electron is held in place by a single charged ionic core, forming a Rydberg bound state. This Rydberg electron is described by a wavefunction extending to a size of up to eight micrometres, comparable to the dimensions of the condensate. In such a state, corresponding to a principal quantum number of n = 202, the Rydberg electron is interacting with several tens of thousands of condensed atoms contained within its orbit. We observe surprisingly long lifetimes and finite size effects caused by the electron exploring the outer regions of the condensate. We anticipate future experiments on electron orbital imaging, the investigation of phonon-mediated coupling of single electrons, and applications in quantum optics.

Concepts: Electron, Photon, Quantum mechanics, Fundamental physics concepts, Condensed matter physics, Superconductivity, Atomic orbital, Pauli exclusion principle


When viewed as an elementary particle, the electron has spin and charge. When binding to the atomic nucleus, it also acquires an angular momentum quantum number corresponding to the quantized atomic orbital it occupies. Even if electrons in solids form bands and delocalize from the nuclei, in Mott insulators they retain their three fundamental quantum numbers: spin, charge and orbital. The hallmark of one-dimensional physics is a breaking up of the elementary electron into its separate degrees of freedom. The separation of the electron into independent quasi-particles that carry either spin (spinons) or charge (holons) was first observed fifteen years ago. Here we report observation of the separation of the orbital degree of freedom (orbiton) using resonant inelastic X-ray scattering on the one-dimensional Mott insulator Sr2CuO3. We resolve an orbiton separating itself from spinons and propagating through the lattice as a distinct quasi-particle with a substantial dispersion in energy over momentum, of about 0.2 electronvolts, over nearly one Brillouin zone.

Concepts: Electron, Photon, Quantum mechanics, Angular momentum, Fundamental physics concepts, Fermion, Standard Model, Atomic orbital