SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Ascaris lumbricoides

173

Understanding the global limits of transmission of soil-transmitted helminth (STH) species is essential for quantifying the population at-risk and the burden of disease. This paper aims to define these limits on the basis of environmental and socioeconomic factors, and additionally seeks to investigate the effects of urbanisation and economic development on STH transmission, and estimate numbers at-risk of infection with Ascaris lumbricoides, Trichuris trichiura and hookworm in 2010.

Concepts: Disease, Infection, Nematodes, Whipworm, Hookworm, Parasitic worm, Parasitic animals, Ascaris lumbricoides

94

Infection with intestinal helminths results in immunological changes that influence co-infections, and might influence fecundity by inducing immunological states affecting conception and pregnancy. We investigated associations between intestinal helminths and fertility in women, using 9 years of longitudinal data from 986 Bolivian forager-horticulturalists, experiencing natural fertility and 70% helminth prevalence. We found that different species of helminth are associated with contrasting effects on fecundity. Infection with roundworm (Ascaris lumbricoides) is associated with earlier first births and shortened interbirth intervals, whereas infection with hookworm is associated with delayed first pregnancy and extended interbirth intervals. Thus, helminths may have important effects on human fertility that reflect physiological and immunological consequences of infection.

Concepts: Intestinal parasite, Fertility, Nematodes, Hookworm, Parasitic worm, Parasitic animals, Pinworm, Ascaris lumbricoides

11

Soil-transmitted helminth (STH) infections (i.e., Ascaris lumbricoides, hookworm, and Trichuris trichiura) affect more than a billion people. Preventive chemotherapy (i.e., repeated administration of anthelmintic drugs to at-risk populations), is the mainstay of control. This strategy, however, does not prevent reinfection. We performed a systematic review and meta-analysis to assess patterns and dynamics of STH reinfection after drug treatment.

Concepts: Drug, Nematodes, Whipworm, Anthelmintic, Parasitic animals, Ascaris lumbricoides

5

The taxonomic distinctiveness of Ascaris lumbricoides and A. suum, two of the world’s most significant nematodes, still represents a much-debated scientific issue. Previous studies have described two different scenarios in transmission patterns, explained by two hypotheses: (1) separated host-specific transmission cycles in highly endemic regions, (2) a single pool of infection shared by humans and pigs in non-endemic regions. Recently, A. suum has been suggested as an important cause of human ascariasis in endemic areas such as China, where cross-infections and hybridization have also been reported. The main aims of the present study were to investigate the molecular epidemiology of human and pig Ascaris from non-endemic regions and, with reference to existing data, to infer the phylogenetic and phylogeographic relationships among the samples.

Concepts: DNA, Epidemiology, Human, Mitochondrial DNA, Ascaris, Ascariasis, Nematodes, Ascaris lumbricoides

2

There is clear empirical evidence that environmental conditions can influence Ascaris spp. free-living stage development and host reinfection, but the impact of these differences on human infections, and interventions to control them, is variable. A new model framework reflecting four key stages of the A. lumbricoides life cycle, incorporating the effects of rainfall and temperature, is used to describe the level of infection in the human population alongside the environmental egg dynamics. Using data from South Korea and Nigeria, we conclude that settings with extreme fluctuations in rainfall or temperature could exhibit strong seasonal transmission patterns that may be partially masked by the longevity of A. lumbricoides infections in hosts; we go on to demonstrate how seasonally timed mass drug administration (MDA) could impact the outcomes of control strategies. For the South Korean setting the results predict a comparative decrease of 74.5% in mean worm days (the number of days the average individual spend infected with worms across a 12 month period) between the best and worst MDA timings after four years of annual treatment. The model found no significant seasonal effect on MDA in the Nigerian setting due to a narrower annual temperature range and no rainfall dependence. Our results suggest that seasonal variation in egg survival and maturation could be exploited to maximise the impact of MDA in certain settings.

Concepts: Infection, Earth, Weather, Transmission and infection of H5N1, Season, South Korea, Korea, Ascaris lumbricoides

2

Preventive chemotherapy and transmission control (PCT) by mass drug administration is the cornerstone of the World Health Organization (WHO)’s policy to control soil-transmitted helminthiases (STHs) caused by Ascaris lumbricoides (roundworm), Trichuris trichiura (whipworm) and hookworm species (Necator americanus and Ancylostama duodenale) which affect over 1 billion people globally. Despite consensus that drug efficacies should be monitored for signs of decline that could jeopardise the effectiveness of PCT, systematic monitoring and evaluation is seldom implemented. Drug trials mostly report aggregate efficacies in groups of participants, but heterogeneities in design complicate classical meta-analyses of these data. Individual participant data (IPD) permit more detailed analysis of drug efficacies, offering increased sensitivity to identify atypical responses potentially caused by emerging drug resistance.

Concepts: Efficacy, Nematodes, World Health Organization, Whipworm, Hookworm, Trichuris, Ascaris lumbricoides

2

Understanding and quantifying the sources and implications of error in the measurement of helminth egg intensity using Kato-Katz (KK) and the newly emerging “gold standard” quantitative polymerase chain reaction (qPCR) technique is necessary for the appropriate design of epidemiological studies, including impact assessments for deworming programs.

Concepts: Infectious disease, Polymerase chain reaction, Molecular biology, Ascariasis, Real-time polymerase chain reaction, DNA polymerase, Thermus aquaticus, Ascaris lumbricoides

2

It is estimated that over a billion people are infected with soil-transmitted helminths (STHs) globally with majority occurring in tropical and subtropical regions of the world. The roundworm (Ascaris lumbricoides), whipworm (Trichuris trichiura), and hookworms (Anclostoma duodenale and Necator americanus) are the main species infecting people. These infections are mostly gained through exposure to faecally contaminated water, soil or contaminated food and with an increase in the risk of infections due to wastewater and sludge reuse in agriculture. Different methods have been developed for the detection and quantification of STHs eggs in environmental samples. However, there is a lack of a universally accepted technique which creates a challenge for comparative assessments of helminths egg concentrations both in different samples matrices as well as between locations. This review presents a comparison of reported methodologies for the detection of STHs eggs, an assessment of the relative performance of available detection methods and a discussion of new emerging techniques that could be applied for detection and quantification. It is based on a literature search using PubMed and Science Direct considering all geographical locations. Original research articles were selected from the results and the methodology sections and assessed in relation to the methods used. Methods reported in these articles were grouped into conventional, molecular and emerging techniques, the main steps in each method were then compared and discussed. The inclusion of a dissociation step aimed at detaching helminth eggs from particulate matter was found to improve the recovery of eggs. Additionally the selection and application of flotation solutions that take into account the relative densities of the eggs of different species of STHs also results in higher egg recovery. Generally the use of conventional methods was shown to be laborious and time consuming and prone to human error. The alternate use of nucleic acid-based techniques has improved the sensitivity of detection and made species specific identification possible. However, these nucleic acid based methods are expensive and less suitable in regions with limited resources and skill. The loop mediated isothermal amplification method shows promise for application in these settings due to its simplicity and use of basic equipment. In addition, the development of imaging soft-ware for the detection and quantification of STHs shows promise to further reduce human error associated with the analysis of environmental samples. It may be concluded that there is a need to comparatively assess the performance of different methods to determine their applicability in different settings as well as for use with different sample matrices (wastewater, sludge, compost, soil, vegetables etc.).

Concepts: Infection, Assessment, Nematodes, Helminthic therapy, Whipworm, Hookworm, Parasitic worm, Ascaris lumbricoides

2

School-based deworming is widely implemented in various countries to reduce the burden of soil-transmitted helminths (STHs), however, the frequency of drug administration varies in different settings. In this study, we compared the impact of a single annual treatment and 4-monthly treatment over a follow-up among Kenyan school children, and investigated the factors associated with residual infection.

Concepts: Nematodes, Ascaris lumbricoides

2

A system was developed to identify and quantify up to seven species of helminth eggs (Ascaris lumbricoides -fertile and unfertile eggs-, Trichuris trichiura, Toxocara canis, Taenia saginata, Hymenolepis nana, Hymenolepis diminuta, and Schistosoma mansoni) in wastewater using different image processing tools and pattern recognition algorithms. The system was developed in three stages. Version one was used to explore the viability of the concept of identifying helminth eggs through an image processing system, while versions 2 and 3 were used to improve its efficiency. The system development was based on the analysis of different properties of helminth eggs in order to discriminate them from other objects in samples processed using the conventional United States Environmental Protection Agency (US EPA) technique to quantify helminth eggs. The system was tested, in its three stages, considering two parameters: specificity (capacity to discriminate between species of helminth eggs and other objects) and sensitivity (capacity to correctly classify and identify the different species of helminth eggs). The final version showed a specificity of 99% while the sensitivity varied between 80 and 90%, depending on the total suspended solids content of the wastewater samples. To achieve such values in samples with total suspended solids (TSS) above 150 mg/L, it is recommended to dilute the concentrated sediment just before taking the images under the microscope. The system allows the helminth eggs most commonly found in wastewater to be reliably and uniformly detected and quantified. In addition, it provides the total number of eggs as well as the individual number by species, and for Ascaris lumbricoides it differentiates whether or not the egg is fertile. The system only requires basically trained technicians to prepare the samples, as for visual identification there is no need for highly trained personnel. The time required to analyze each image is less than a minute. This system could be used in central analytical laboratories providing a remote analysis service.

Concepts: Parasites, Nematodes, United States Environmental Protection Agency, Cestoda, Whipworm, Digital image processing, Taenia saginata, Ascaris lumbricoides