SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Arthropod

707

Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA). We discovered high diversity, with a conservative estimate range of 32-211 morphospecies, and 24-128 distinct arthropod families per house. The majority of this indoor diversity (73%) was made up of true flies (Diptera), spiders (Araneae), beetles (Coleoptera), and wasps and kin (Hymenoptera, especially ants: Formicidae). Much of the arthropod diversity within houses did not consist of synanthropic species, but instead included arthropods that were filtered from the surrounding landscape. As such, common pest species were found less frequently than benign species. Some of the most frequently found arthropods in houses, such as gall midges (Cecidomyiidae) and book lice (Liposcelididae), are unfamiliar to the general public despite their ubiquity. These findings present a new understanding of the diversity, prevalence, and distribution of the arthropods in our daily lives. Considering their impact as household pests, disease vectors, generators of allergens, and facilitators of the indoor microbiome, advancing our knowledge of the ecology and evolution of arthropods in homes has major economic and human health implications.

Concepts: Evolution, Nematocera, Insect, Arthropod, Flies, Ant, Spider, Pterygota

487

Spiders have been suspected to be one of the most important groups of natural enemies of insects worldwide. To document the impact of the global spider community as insect predators, we present estimates of the biomass of annually killed insect prey. Our estimates assessed with two different methods suggest that the annual prey kill of the global spider community is in the range of 400-800 million metric tons (fresh weight), with insects and collembolans composing >90% of the captured prey. This equals approximately 1‰ of the global terrestrial net primary production. Spiders associated with forests and grasslands account for >95% of the annual prey kill of the global spider community, whereas spiders in other habitats are rather insignificant contributors over a full year. The spider communities associated with annual crops contribute less than 2% to the global annual prey kill. This, however, can be partly explained by the fact that annual crop fields are “disturbed habitats” with a low buildup of spider biomass and that agrobiont spiders often only kill prey over short time periods in a year. Our estimates are supported by the published results of exclusion experiments, showing that the number of herbivorous/detritivorous insects and collembolans increased significantly after spider removal from experimental plots. The presented estimates of the global annual prey kill and the relative contribution of spider predation in different biomes improve the general understanding of spider ecology and provide a first assessment of the global impact of this very important predator group.

Concepts: Insect, Arthropod, Predation, Ecology, Lion, Biological pest control, Aposematism, Spider

367

Long-term survival has been one of the most studied of the extraordinary physiological characteristics of cryptobiosis in micrometazoans such as nematodes, tardigrades and rotifers. In the available studies of long-term survival of micrometazoans, instances of survival have been the primary observation, and recovery conditions of animals or subsequent reproduction are generally not reported. We therefore documented recovery conditions and reproduction immediately following revival of tardigrades retrieved from a frozen moss sample collected in Antarctica in 1983 and stored at -20°C for 30.5 years. We recorded recovery of two individuals and development of a separate egg of the Antarctic tardigrade, Acutuncus antarcticus, providing the longest records of survival for tardigrades as animals or eggs. One of the two resuscitated individuals and the hatchling successfully reproduced repeatedly after their recovery from long-term cryptobiosis. This considerable extension of the known length of long-term survival of tardigrades recorded in our study is interpreted as being associated with the minimum oxidative damage likely to have resulted from storage under stable frozen conditions. The long recovery times of the revived tardigrades observed is suggestive of the requirement for repair of damage accrued over 30 years of cryptobiosis. Further more detailed studies will improve understanding of mechanisms and conditions underlying the long-term survival of cryptobiotic organisms.

Concepts: Arthropod, Cultural studies, Tardigrade, Trehalose, Antarctica, Cryptobiosis, Antarctic Circle, Antarctic

311

Spiders are an important animal group, with a long history. Details of their origins remain limited, with little knowledge of their stem group, and no insights into the sequence of character acquisition during spider evolution. We describe a new fossil arachnid,Idmonarachne brasierigen. et sp. nov. from the Late Carboniferous (Stephanian,ca305-299 Ma) of Montceau-les-Mines, France. It is three-dimensionally preserved within a siderite concretion, allowing both laboratory- and synchrotron-based phase-contrast computed tomography reconstruction. The latter is a first for siderite-hosted fossils and has allowed us to investigate fine anatomical details. Although distinctly spider-like in habitus, this remarkable fossil lacks a key diagnostic character of Araneae: spinnerets on the underside of the opisthosoma. It also lacks a flagelliform telson found in the recently recognized, spider-related, Devonian-Permian Uraraneida. Cladistic analysis resolves our new fossil as sister group to the spiders: the spider stem-group comprises the uraraneids andI. brasieri While we are unable to demonstrate the presence of spigots in this fossil, the recovered phylogeny suggests the earliest character to evolve on the spider stem-group is the secretion of silk. This would have been followed by the loss of a flagelliform telson, and then the ability to spin silk using spinnerets. This last innovation defines the true spiders, significantly post-dates the origins of silk, and may be a key to the group’s success. The Montceau-les-Mines locality has previously yielded a mesothele spider (with spinnerets). Evidently, Late Palaeozoic spiders lived alongside Palaeozoic arachnid grades which approached the spider condition, but did not express the full suite of crown-group autapomorphies.

Concepts: Arthropod, Phylogenetics, Clade, Phylum, Arachnid, Spider, Chelicerata, Tarantula

206

Recent discoveries of fossil nervous tissue in Cambrian fossils have allowed researchers to trace the origin and evolution of the complex arthropod head and brain based on stem groups close to the origin of the clade, rather than on extant, highly derived members. Here we show that Kerygmachela from Sirius Passet, North Greenland, a primitive stem-group euarthropod, exhibits a diminutive (protocerebral) brain that innervates both the eyes and frontal appendages. It has been surmised, based on developmental evidence, that the ancestor of vertebrates and arthropods had a tripartite brain, which is refuted by the fossil evidence presented here. Furthermore, based on the discovery of eyes in Kerygmachela, we suggest that the complex compound eyes in arthropods evolved from simple ocelli, present in onychophorans and tardigrades, rather than through the incorporation of a set of modified limbs.

Concepts: Evolution, Insect, Arthropod, Annelid, Fossil, Paleontology, Cambrian explosion, Cambrian

192

A nautiloid conch containing many disarticulated exoskeletons of Omegops cornelius (Phacopidae, Trilobita) was found in the Upper Devonian Hongguleleng Formation of the northwestern margin of the Junggar Basin, NW China. The similar number of cephala, thoraces and pygidia, unbroken thoraces, explicit exuviae, and lack of other macrofossils in the conch, indicate that at least seven individual trilobites had moulted within the nautiloid living chamber, using the vacant chamber of a dead nautiloid as a communal place for ecdysis. This exuvial strategy manifests cryptic behaviour of trilobites, which may have resulted from the adaptive evolution induced by powerful predation pressure, unstable marine environments, and competition pressure of organisms occupying the same ecological niche in the Devonian period. The unusual presence of several trilobites moulting within a nautiloid conch is possibly associated with social behaviours in face of a serious crisis. New materials in this study open a window for understanding the survival strategy of marine benthic organisms, especially predator-prey interactions and the behavioural ecology of trilobites in the middle Palaeozoic.

Concepts: Arthropod, Predation, Ecology, Carboniferous, Ordovician, Trilobite, Devonian, Ecdysis

186

The indoor biome is a novel habitat which recent studies have shown exhibit not only high microbial diversity, but also high arthropod diversity. Here, we analyze findings from a survey of 50 houses (southeastern USA) within the context of additional survey data concerning house and room features, along with resident behavior, to explore how arthropod diversity and community composition are influenced by physical aspects of rooms and their usage, as well as the lifestyles of human residents. We found that indoor arthropod diversity is strongly influenced by access to the outdoors and carpeted rooms hosted more types of arthropods than non-carpeted rooms. Arthropod communities were similar across most room types, but basements exhibited more unique community compositions. Resident behavior such as house tidiness, pesticide usage, and pet ownership showed no significant influence on arthropod community composition. Arthropod communities across all rooms in houses exhibit trophic structure-with both generalized predators and scavengers included in the most frequently found groups. These findings suggest that indoor arthropods serve as a connection to the outdoors, and that there is still much yet to be discovered about their impact on indoor health and the unique ecological dynamics within our homes.

Concepts: Arthropod, Ecology, Natural resource, Community, House, Rooms, Basement, Room

183

The folded intersegmental membrane is a structure that interconnects two adjacent abdominal segments; this structure is distributed in the segments of the honey bee abdomen. The morphology of the folded intersegmental membrane has already been documented. However, the ultrastructure of the intersegmental membrane and its assistive role in the telescopic movements of the honey bee abdomen are poorly understood. To explore the morphology and ultrastructure of the folded intersegmental membrane in the honey bee abdomen, frozen sections were analyzed under a scanning electron microscope. The intersegmental membrane between two adjacent terga has a Z-S configuration that greatly influences the daily physical activities of the honey bee abdomen. The dorsal intersegmental membrane is 2 times thicker than the ventral one, leading to asymmetric abdominal motion. Honey bee abdominal movements were recorded using a high-speed camera and through phase-contrast computed tomography. These movements conformed to the structural features of the folded intersegmental membrane.

Concepts: Electron, Insect, Arthropod, Honey bee, Abdomen, Scanning electron microscope, Bee, Apidae

176

Carbonated hydroxyapatite is the mineral found in vertebrate bones and teeth, whereas invertebrates utilize calcium carbonate in their mineralized organs. In particular, stable amorphous calcium carbonate is found in many crustaceans. Here we report on an unusual, crystalline enamel-like apatite layer found in the mandibles of the arthropod Cherax quadricarinatus (freshwater crayfish). Despite their very different thermodynamic stabilities, amorphous calcium carbonate, amorphous calcium phosphate, calcite and fluorapatite coexist in well-defined functional layers in close proximity within the mandible. The softer amorphous minerals are found primarily in the bulk of the mandible whereas apatite, the harder and less soluble mineral, forms a wear-resistant, enamel-like coating of the molar tooth. Our findings suggest a unique case of convergent evolution, where similar functional challenges of mastication led to independent developments of structurally and mechanically similar, apatite-based layers in the teeth of genetically remote phyla: vertebrates and crustaceans.

Concepts: Arthropod, Calcium, Crustacean, Mineral, Calcium carbonate, Teeth, Crayfish, Aragonite

173

There is a tension between the conception of cognition as a central nervous system (CNS) process and a view of cognition as extending towards the body or the contiguous environment. The centralised conception requires large or complex nervous systems to cope with complex environments. Conversely, the extended conception involves the outsourcing of information processing to the body or environment, thus making fewer demands on the processing power of the CNS. The evolution of extended cognition should be particularly favoured among small, generalist predators such as spiders, and here, we review the literature to evaluate the fit of empirical data with these contrasting models of cognition. Spiders do not seem to be cognitively limited, displaying a large diversity of learning processes, from habituation to contextual learning, including a sense of numerosity. To tease apart the central from the extended cognition, we apply the mutual manipulability criterion, testing the existence of reciprocal causal links between the putative elements of the system. We conclude that the web threads and configurations are integral parts of the cognitive systems. The extension of cognition to the web helps to explain some puzzling features of spider behaviour and seems to promote evolvability within the group, enhancing innovation through cognitive connectivity to variable habitat features. Graded changes in relative brain size could also be explained by outsourcing information processing to environmental features. More generally, niche-constructed structures emerge as prime candidates for extending animal cognition, generating the selective pressures that help to shape the evolving cognitive system.

Concepts: Central nervous system, Nervous system, Psychology, Brain, Insect, Arthropod, Cognitive psychology, Cognition