SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Aromatic hydrocarbon

68

The blowout of the Deepwater Horizon (DWH) drilling rig in 2010 released an unprecedented amount of oil at depth (1,500 m) into the Gulf of Mexico (GoM). Sedimentary geochemical data from an extensive area (∼194,000 km(2)) was used to characterize the amount, chemical signature, distribution, and extent of the DWH oil deposited on the seafloor in 2010-2011 from coastal to deep-sea areas in the GoM. The analysis of numerous hydrocarbon compounds (N = 158) and sediment cores (N = 2,613) suggests that, 1.9 ± 0.9 × 10(4) metric tons of hydrocarbons (>C9 saturated and aromatic fractions) were deposited in 56% of the studied area, containing 21± 10% (up to 47%) of the total amount of oil discharged and not recovered from the DWH spill. Examination of the spatial trends and chemical diagnostic ratios indicate large deposition of weathered DWH oil in coastal and deep-sea areas and negligible deposition on the continental shelf (behaving as a transition zone in the northern GoM). The large-scale analysis of deposited hydrocarbons following the DWH spill helps understanding the possible long-term fate of the released oil in 2010, including sedimentary transformation processes, redistribution of deposited hydrocarbons, and persistence in the environment as recycled petrocarbon.

Concepts: Petroleum, Sedimentary rock, Atlantic Ocean, Hydrocarbon, Aromatic hydrocarbon, Mexico, Gulf of Mexico, Tonne

50

Polycyclic aromatic hydrocarbons (PAHs) are the main toxic compounds in natural bitumen, a fossil material used by modern and ancient societies around the world. The adverse health effects of PAHs on modern humans are well established, but their health impacts on past populations are unclear. It has previously been suggested that a prehistoric health decline among the native people living on the California Channel Islands may have been related to PAH exposure. Here, we assess the potential health risks of PAH exposure from the use and manufacture of bitumen-coated water bottles by ancient California Indian societies.

Concepts: Human, Petroleum, Carbon, Polycyclic aromatic hydrocarbon, Benzene, Hydrocarbon, Aromatic hydrocarbon, Naphthalene

37

The brain pathology in autism spectrum disorders (ASD) indicates marked and ongoing inflammatory reactivity with concomitant neuronal damage. These findings are suggestive of neuronal insult as a result of external factors, rather than some type of developmental mishap. Various xenobiotics have been suggested as possible causes of this pathology. In a recent review, the top ten environmental compounds suspected of causing autism and learning disabilities were listed and they included: lead, methyl-mercury, polychorinated biphenyls, organophosphate pesticides, organochlorine pesticides, endocrine disruptors, automotive exhaust, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, and perfluorinated compounds. This current review, however, will focus specifically on mercury exposure and ASD by conducting a comprehensive literature search of original studies in humans that examine the potential relationship between mercury and ASD, categorizing, summarizing, and discussing the published research that addresses this topic. This review found 91 studies that examine the potential relationship between mercury and ASD from 1999 to February 2016. Of these studies, the vast majority (74%) suggest that mercury is a risk factor for ASD, revealing both direct and indirect effects. The preponderance of the evidence indicates that mercury exposure is causal and/or contributory in ASD.

Concepts: Brain, Causality, Factor analysis, Polycyclic aromatic hydrocarbon, Autism, Aromatic hydrocarbon, Biphenyl, Chelation therapy

32

The 2010 Deepwater Horizon oil spill resulted in 1.6-2.6 × 10(10) grams of petrocarbon accumulation on the seafloor. Data from a deep sediment trap, deployed 7.4 km SW of the well between August 2010 and October 2011, disclose that the sinking of spill-associated substances, mediated by marine particles, especially phytoplankton, continued at least 5 mo following the capping of the well. In August/September 2010, an exceptionally large diatom bloom sedimentation event coincided with elevated sinking rates of oil-derived hydrocarbons, black carbon, and two key components of drilling mud, barium and olefins. Barium remained in the water column for months and even entered pelagic food webs. Both saturated and polycyclic aromatic hydrocarbon source indicators corroborate a predominant contribution of crude oil to the sinking hydrocarbons. Cosedimentation with diatoms accumulated contaminants that were dispersed in the water column and transported them downward, where they were concentrated into the upper centimeters of the seafloor, potentially leading to sustained impact on benthic ecosystems.

Concepts: Petroleum, Carbon, Polycyclic aromatic hydrocarbon, Benzene, Hydrocarbon, Aromatic hydrocarbon, Phytoplankton, Diatom

30

BACKGROUND: Sensitization to cockroach is one of the strongest identified risk factors for greater asthma morbidity in low-income urban communities; however, the timing of exposures relevant to the development of sensitization has not been elucidated fully. Furthermore, exposure to combustion byproducts, including polycyclic aromatic hydrocarbons (PAHs), can augment the development of allergic sensitization. OBJECTIVE: We sought to test the hypotheses that domestic cockroach allergen measured prenatally would predict cockroach sensitization in early childhood and that this association would be greater for children exposed to higher PAH concentrations. METHODS: Dominican and African American pregnant women living in New York City were enrolled. In the third trimester expectant mothers wore personal air samplers for measurement of 8 nonvolatile PAHs and the semivolatile PAH pyrene, and dust was collected from homes for allergen measurement. Glutathione-S-transferase μ 1 (GSTM1) gene polymorphisms were measured in children. Allergen-specific IgE levels were measured from the children at ages 2, 3, 5, and 7 years. RESULTS: Bla g 2 in prenatal kitchen dust predicted cockroach sensitization at the ages of 5 to 7 years (adjusted relative risk [RR], 1.15; P = .001; n = 349). The association was observed only among children with greater than (RR, 1.22; P = .001) but not less than (RR, 1.07; P = .24) the median sum of 8 nonvolatile PAH levels. The association was most pronounced among children with higher PAH levels and null for the GSTM1 gene (RR, 1.54; P = .001). CONCLUSIONS: Prenatal exposure to cockroach allergen was associated with a greater risk of allergic sensitization. This risk was increased by exposure to nonvolatile PAHs, with children null for the GSTM1 mutation particularly vulnerable.

Concepts: Pregnancy, Asthma, Polycyclic aromatic hydrocarbon, Hydrocarbon, Aromatic hydrocarbon, Aromaticity, Naphthalene, Pyrene

30

Recent studies documented significantly higher concentrations of polycyclic aromatic hydrocarbons (PAHs) in settled house dust in living spaces adjacent to parking lots sealed with coal-tar-based products, as well as in nearby soil. To date, no studies have examined the potential human health effects of PAHs from these products in dust and soil. Here we present the results of an analysis of potential cancer risk associated with incidental ingestion exposures to PAHs in settings near coal-tar-sealed pavement. Exposures to benzo[a]pyrene equivalents were characterized across five scenarios. Deterministic and probabilistic methods were used to calculate excess lifetime cancer risk arising from exposures to PAHs in house dust, soil, and both media. The central tendency estimate of excess cancer risk resulting from lifetime exposures to soil and dust via non-dietary ingestion in these settings exceeded 1 * 10-4 in both deterministic and probabilistic estimates. Soil was the primary driver of risk, but according to probabilistic calculations, reasonable maximum exposure to affected house dust in the first 6 years of life was sufficient to generate risk in excess of 1 * 10-4. Our results indicate that the presence of coal-tar-based pavement sealants is associated with significant increases in estimated excess lifetime cancer risk for nearby residents. Much of this calculated excess risk arises from exposures to PAHs in childhood (i.e., ages 0-6).

Concepts: Mathematics, Polycyclic aromatic hydrocarbon, Benzene, Aromatic hydrocarbon, Aromaticity, 1990s music groups, Dust, Naphthalene

28

Cooking oil fumes (COF) contain polycyclic aromatic hydrocarbons (PAHs), heterocyclic aromatic amines, benzene, and formaldehyde, which may cause oxidative damages to DNA and lipids. We assessed the relations between exposure to COF and subsequent oxidative DNA damage and lipid peroxidation among military cooks and office-based soldiers. The study population, including 61 Taiwanese male military cooks and a reference group of 37 office soldiers, collected urine samples pre-shift of the first weekday and post-shift of the fifth workday. We measured airborne particulate PAHs in military kitchens and offices and concentrations of urinary 1-OHP, a biomarker of PAH exposure, urinary 8-hydroxydeoxyguanosine (8-OHdG), a biomarkers of oxidative DNA damage, and urinary isoprostane (Isop). Airborne particulate PAHs levels in kitchens significantly exceeded those in office areas. The concentrations of urinary 1-OHP among military cooks increased significantly after 5 days of exposure to COF. Using generalized estimating equation analysis adjusting for confounding, a change in log(8-OHdG) and log(Isop) were statistically significantly related to a unit change in log(1-OHP) (regression coefficient (β), β=0.06, 95% CI 0.001-0.12) and (β=0.07, 95% CI 0.001-0.13), respectively. Exposure to PAHs, or other compounds in cooking oil fumes, may cause both oxidative DNA damage and lipid peroxidation.

Concepts: Regression analysis, Carbon, Polycyclic aromatic hydrocarbon, Benzene, Hydrocarbon, Aromatic hydrocarbon, Aromaticity, Naphthalene

28

Potentially toxic 16 priority polycyclic aromatic hydrocarbons (PAHs) were determined in four brands of grounded coffee. Four to 13 PAHs were detected. Concentrations of total PAHs in different brands of coffee samples were in the range of 831.7-1,589.7 μg/kg. Benzo[a]pyrene (2A: probable human carcinogen) was found in Nescafe Premium whereas naphthalene (2B: possible human carcinogen) was found in all the samples of coffee.

Concepts: Carbon, Polycyclic aromatic hydrocarbon, Benzene, Hydrocarbon, Aromatic hydrocarbon, Aromaticity, Naphthalene, Carcinogens

28

In this study, flotation-assisted homogeneous liquid-liquid microextraction (FA-HLLME) was developed as a fast, simple, and efficient method for extraction of four polycyclic aromatic hydrocarbons (PAHs) in soil samples followed by gas chromatography-flame ionization detector (GC-FID) analysis. A special home-made extraction cell was designed to facilitate collection of the low-density extraction solvent without a need for centrifugation. In this method, PAHs were extracted from soil samples into methanol and water (1:1, v/v) using ultrasound in two steps followed by filtration as a clean-up step. The filtrate was added into the home-made extraction cell contained mixture of 1.0mL methanol (homogenous solvent) and 150.0μL toluene (extraction solvent). Using N(2) flotation, the dispersed extraction solvent was transferred to the surface of the mixture and was collected by means of a micro-syringe. Then, 2μL of the collected organic solvent was injected into the GC-FID for subsequent analysis. Under optimal conditions, linearity of the method was in the range of 40-1000μgkg(-1) soil (dry weight). The relative standard deviations in real samples varied from 5.9 to 15.2% (n=4). The proposed method was successfully applied to analyze the target PAHs in soil samples, and satisfactory results were obtained.

Concepts: Ethanol, Polycyclic aromatic hydrocarbon, Benzene, Solvent, Aromatic hydrocarbon, Toluene, Naphthalene

28

The arenium acid [mesitylene-H]+ has been shown to be an extraordinarily active H/D exchange catalyst for the perdeuteration of polycyclic aromatic hydrocarbons. The reactions take place under ambient conditions in C6D6 as an inexpensive deuterium source. High isolated yields and excellent degrees of deuterium incorporation were achieved using the substrates para-terphenyl, fluoranthene, pyrene, triphenylene, and corannulene.

Concepts: Hydrogen, Polycyclic aromatic hydrocarbon, Benzene, Organic chemistry, Aromatic hydrocarbon, Polycyclic aromatic hydrocarbons, Pyrene, Fluoranthene