SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Argon

39

Anaesthesia for medical purposes was introduced in the 19th century. However, the physiological mode of anaesthetic drug actions on the nervous system remains unclear. One of the remaining questions is how these different compounds, with no structural similarities and even chemically inert elements such as the noble gas xenon, act as anaesthetic agents inducing loss of consciousness. The main goal here was to determine if anaesthetics affect the same or similar processes in plants as in animals and humans.

Concepts: Nervous system, Cell, Plant, Animal, Anesthesia, Periodic table, Noble gas, Argon

31

Geochemical monitoring of groundwater and soil gas emission pointed out precursor and/or coseismic anomalies of noble gases associated with earthquakes, but there was lack of plausible physico-chemical basis. A laboratory experiment of rock fracturing and noble gas emission was conducted, but there is no quantitative connection between the laboratory results and observation in field. We report here deep groundwater helium anomalies related to the 2016 Kumamoto earthquake, which is an inland crustal earthquake with a strike-slip fault and a shallow hypocenter (10 km depth) close to highly populated areas in Southwest Japan. The observed helium isotope changes, soon after the earthquake, are quantitatively coupled with volumetric strain changes estimated from a fault model, which can be explained by experimental studies of helium degassing during compressional loading of rock samples. Groundwater helium is considered as an effective strain gauge. This suggests the first quantitative linkage between geochemical and seismological observations and may open the possibility to develop a new monitoring system to detect a possible strain change prior to a hazardous earthquake in regions where conventional borehole strain meter is not available.

Concepts: Scientific method, Atom, Gas, Helium, Earthquake, Noble gas, Neon, Argon

30

The isotopes (129)Xe, produced from the radioactive decay of extinct (129)I, and (136)Xe, produced from extinct (244)Pu and extant (238)U, have provided important constraints on early mantle outgassing and volatile loss from Earth. The low ratios of radiogenic to non-radiogenic xenon ((129)Xe/(130)Xe) in ocean island basalts (OIBs) compared with mid-ocean-ridge basalts (MORBs) have been used as evidence for the existence of a relatively undegassed primitive deep-mantle reservoir. However, the low (129)Xe/(130)Xe ratios in OIBs have also been attributed to mixing between subducted atmospheric Xe and MORB Xe, which obviates the need for a less degassed deep-mantle reservoir. Here I present new noble gas (He, Ne, Ar, Xe) measurements from an Icelandic OIB that reveal differences in elemental abundances and (20)Ne/(22)Ne ratios between the Iceland mantle plume and the MORB source. These observations show that the lower (129)Xe/(130)Xe ratios in OIBs are due to a lower I/Xe ratio in the OIB mantle source and cannot be explained solely by mixing atmospheric Xe with MORB-type Xe. Because (129)I became extinct about 100 million years after the formation of the Solar System, OIB and MORB mantle sources must have differentiated by 4.45 billion years ago and subsequent mixing must have been limited. The Iceland plume source also has a higher proportion of Pu- to U-derived fission Xe, requiring the plume source to be less degassed than MORBs, a conclusion that is independent of noble gas concentrations and the partitioning behaviour of the noble gases with respect to their radiogenic parents. Overall, these results show that Earth’s mantle accreted volatiles from at least two separate sources and that neither the Moon-forming impact nor 4.45 billion years of mantle convection has erased the signature of Earth’s heterogeneous accretion and early differentiation.

Concepts: Plate tectonics, Gas, Xenon, Noble gas, Neon, Mantle, Argon, Krypton

28

: To report the beneficial properties of argon laser as an adjunctive therapy in 2 patients with refractory fungal keratitis.

Concepts: Laser, Keratitis, Argon

28

Numerous death cases due to suffocation in a toxic or oxygen deficient gas atmosphere have been described in the literature, but unfortunately especially cases involving inert gases like helium are often presented without detailed toxicological findings. Observations on two suicides are reported, one by helium and the other by argon inhalation. During autopsies gas samples from the lungs were collected directly into headspace vials by a procedure ensuring minimal loss and dilution. Qualitative gas analyses were performed using headspace gas chromatography-mass spectrometry (HS-GC/MS). For carrier gas the commonly used helium was replaced by hydrogen. Qualitative positive results were obtained in the argon case, but the case involving helium revealed negative findings. The use of HS-GC/MS enables in principle to detect inert gases like argon or helium. However, a number of factors may later influence the results as, e.g. a longer period of time between death and sampling or pre-analytical artefacts during sampling of such highly volatile substances. In absence of analytical data supporting helium exposure, the causes of death in the actual cases were found to be asphyxia and in both cases the manner was suicide.

Concepts: Oxygen, Carbon dioxide, Nitrogen, Atmosphere, Noble gas, Suicide methods, Argon, Asphyxiant gas

24

The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. In this work, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, the permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. These findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.

Concepts: Atom, Gas, Helium, Noble gas, Neon, Argon, Noble gases, Electron shell

22

We report precise experimental values of the enthalpy of sublimation (ΔHs) of quenched condensed films of neon (Ne), nitrogen (N2), oxygen (O2), argon (Ar), carbon dioxide (CO2), krypton (Kr), xenon (Xe), and water (H2O) vapor using a single consistent measurement platform. The experiments are performed well below the triple point temperature of each gas and fall in the temperature range where existing experimental data is very limited. A 6 cm2and 400 µm thick double paddle oscillator (DPO) with high quality factor (Q ≈ 4 × 105at 298K) and high frequency stability (33 parts per billion) is utilized for the measurements. The enthalpies of sublimation are derived by measuring the rate of mass loss during temperature programmed desorption. The mass change is detected due to change in the resonance frequency of the self-tracking oscillator. Our measurements typically remain within 10% of the available literature, theory, and National Institute of Standards and Technology (NIST)Web Thermo Tables(WTT) values, but are performed using an internally consistent method across different gases.

Concepts: Oxygen, Carbon dioxide, Temperature, Nitrogen, Thermodynamics, Gas, Triple point, Argon

22

The noble gas helium has many applications owing to its distinct physical and chemical characteristics, namely: its low density, low solubility, and high thermal conductivity. Chiefly, the abundance of studies in medicine relating to helium are concentrated in its possibility of being used as an adjunct therapy in a number of respiratory ailments such as asthma exacerbation, COPD, ARDS, croup, and bronchiolitis. Helium gas, once believed to be biologically inert, has been recently shown to be beneficial in protecting the myocardium from ischemia by various mechanisms. Though neuroprotection of brain tissue has been documented, the mechanism by which it does so has yet to be made clear. Surgeons are exploring using helium instead of carbon dioxide to insufflate the abdomen of patients undergoing laparoscopic abdominal procedures due to its superiority in preventing respiratory acidosis in patients with comorbid conditions that cause carbon dioxide retention. Newly discovered applications in Pulmonary MRI radiology and imaging of organs in very fine detail using Helium Ion Microscopy has opened exciting new possibilities for the use of helium gas in technologically advanced fields of medicine.

Concepts: Oxygen, Carbon dioxide, Asthma, Hydrogen, Atom, Helium, Argon, Respiratory acidosis

17

The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p<0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 hours after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase 3 immunofluorescence, indicating that shockwave-induced cell death involves apoptosis. Xenon (50% atm) applied 1 hour following blast exposure reduced injury 24 hours (p<0.01), 48 hours (p<0.05) and 72 hours (p<0.001) later, compared to untreated control injury. Xenon-treated injured slices were not significantly different to uninjured sham slices at 24 hours and 72 hours. We demonstrate for the first time that xenon-treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for blast-induced traumatic brain injury.

Concepts: Brain, Apoptosis, Traumatic brain injury, Shock wave, Physical trauma, Argon, Propidium iodide, Shockwave

14

Argon is a noble gas element that has demonstrated narcotic and protective abilities that may prove useful in the medical field. The earliest records of argon gas have exposed its ability to exhibit narcotic symptoms at hyperbaric pressures greater than 10 atmospheres with more recent evidence seeking to display argon as a potential neuroprotective agent. The high availability and low cost of argon provide a distinct advantage over using similarly acting treatments such as xenon gas. Argon gas treatments in models of brain injury such as in vitro Oxygen-Glucose-Deprivation (OGD) and Traumatic Brain Injury (TBI), as well as in vivo Middle Cerebral Artery Occlusion (MCAO) have largely demonstrated positive neuroprotective behavior. On the other hand, some warning has been made to potential negative effects of argon treatments in cases of ischemic brain injury, where increases of damage in the sub-cortical region of the brain have been uncovered. Further support for argon use in the medical field has been demonstrated in its use in combination with tPA, its ability as an organoprotectant, and its surgical applications. This review seeks to summarize the history and development of argon gas use in medical research as mainly a neuroprotective agent, to summarize the mechanisms associated with its biological effects, and to elucidate its future potential.

Concepts: Medicine, Brain, Traumatic brain injury, Neurology, Ischemia, Xenon, Noble gas, Argon