Discover the most talked about and latest scientific content & concepts.

Concept: Archosaur


Birds still share many traits with their dinosaur ancestors, making them the best living group to reconstruct certain aspects of non-avian theropod biology. Bipedal, digitigrade locomotion and parasagittal hindlimb movement are some of those inherited traits. Living birds, however, maintain an unusually crouched hindlimb posture and locomotion powered by knee flexion, in contrast to the inferred primitive condition of non-avian theropods: more upright posture and limb movement powered by femur retraction. Such functional differences, which are associated with a gradual, anterior shift of the centre of mass in theropods along the bird line, make the use of extant birds to study non-avian theropod locomotion problematic. Here we show that, by experimentally manipulating the location of the centre of mass in living birds, it is possible to recreate limb posture and kinematics inferred for extinct bipedal dinosaurs. Chickens raised wearing artificial tails, and consequently with more posteriorly located centre of mass, showed a more vertical orientation of the femur during standing and increased femoral displacement during locomotion. Our results support the hypothesis that gradual changes in the location of the centre of mass resulted in more crouched hindlimb postures and a shift from hip-driven to knee-driven limb movements through theropod evolution. This study suggests that, through careful experimental manipulations during the growth phase of ontogeny, extant birds can potentially be used to gain important insights into previously unexplored aspects of bipedal non-avian theropod locomotion.

Concepts: Bird, Knee, Extinction, Locomotion, Dinosaur, Theropoda, Bipedalism, Archosaur


The largest reported ichthyosaurs lived during the Late Triassic (~235-200 million years ago), and isolated, fragmentary bones could be easily mistaken for those of dinosaurs because of their size. We report the discovery of an isolated bone from the lower jaw of a giant ichthyosaur from the latest Triassic of Lilstock, Somerset, UK. It documents that giant ichthyosaurs persisted well into the Rhaetian Stage, and close to the time of the Late Triassic extinction event. This specimen has prompted the reinterpretation of several large, roughly cylindrical bones from the latest Triassic (Rhaetian Stage) Westbury Mudstone Formation from Aust Cliff, Gloucestershire, UK. We argue here that the Aust bones, previously identified as those of dinosaurs or large terrestrial archosaurs, are jaw fragments from giant ichthyosaurs. The Lilstock and Aust specimens might represent the largest ichthyosaurs currently known.

Concepts: Extinction, Cretaceous, Dinosaur, Extinction event, Triassic, Jurassic, Archosaur, Norian


A small accumulation of bones from the Norian (Upper Triassic) of the Seazza Brook Valley (Carnic Prealps, Northern Italy) was originally (1989) identified as a gastric pellet made of pterosaur skeletal elements. The specimen has been reported in literature as one of the very few cases of gastric ejecta containing pterosaur bones since then. However, the detailed analysis of the bones preserved in the pellet, their study by X-ray microCT, and the comparison with those of basal pterosaurs do not support a referral to the Pterosauria. Comparison with the osteology of a large sample of Middle-Late Triassic reptiles shows some affinity with the protorosaurians, mainly with Langobardisaurus pandolfii that was found in the same formation as the pellet. However, differences with this species suggest that the bones belong to a similar but distinct taxon. The interpretation as a gastric pellet is confirmed.

Concepts: Bone, Reptile, Mammal, Pterosaur, Triassic, Jurassic, Archosaur, Prolacertiformes


The early evolution of archosauromorphs (bird- and crocodile-line archosaurs and stem-archosaurs) represents an important case of adaptive radiation that occurred in the aftermath of the Permo-Triassic mass extinction. Here we enrich the early archosauromorph record with the description of a moderately large (3-4 m in total length), herbivorous new allokotosaurian, Shringasaurus indicus, from the early Middle Triassic of India. The most striking feature of Shringasaurus indicus is the presence of a pair of large supraorbital horns that resemble those of some ceratopsid dinosaurs. The presence of horns in the new species is dimorphic and, as occurs in horned extant bovid mammals, these structures were probably sexually selected and used as weapons in intraspecific combats. The relatively large size and unusual anatomy of Shringasaurus indicus broadens the morphological diversity of Early-Middle Triassic tetrapods and complements the understanding of the evolutionary mechanisms involved in the early archosauromorph diversification.

Concepts: Evolution, Extinction, Dinosaur, Extinction event, Triassic, Archosaur, Archosauromorpha, Permian–Triassic extinction event


Birds, dinosaurs, crocodilians, pterosaurs and their close relatives form the highly diverse clade Archosauriformes. Archosauriforms have a deep evolutionary history, originating in the late Permian, prior to the end-Permian mass extinction, and radiating in the Triassic to dominate Mesozoic ecosystems. However, the origins of this clade and its extraordinarily successful body plan remain obscure. Here, we describe an exceptionally preserved fossil skull from the Lower Triassic of Brazil, representing a new species, Teyujagua paradoxa, transitional in morphology between archosauriforms and more primitive reptiles. This skull reveals for the first time the mosaic assembly of key features of the archosauriform skull, including the antorbital and mandibular fenestrae, serrated teeth, and closed lower temporal bar. Phylogenetic analysis recovers Teyujagua as the sister taxon to Archosauriformes, and is congruent with a two-phase model of early archosauriform evolution, in response to two mass extinctions occurring at the end of the Guadalupian and the Permian.

Concepts: Evolution, Extinction, Synapsid, Dinosaur, Extinction event, Triassic, Archosaur, Permian


The relationship between dinosaurs and other reptiles is well established, but the sequence of acquisition of dinosaurian features has been obscured by the scarcity of fossils with transitional morphologies. The closest extinct relatives of dinosaurs either have highly derived morphologies or are known from poorly preserved or incomplete material. Here we describe one of the stratigraphically lowest and phylogenetically earliest members of the avian stem lineage (Avemetatarsalia), Teleocrater rhadinus gen. et sp. nov., from the Middle Triassic epoch. The anatomy of T. rhadinus provides key information that unites several enigmatic taxa from across Pangaea into a previously unrecognized clade, Aphanosauria. This clade is the sister taxon of Ornithodira (pterosaurs and birds) and shortens the ghost lineage inferred at the base of Avemetatarsalia. We demonstrate that several anatomical features long thought to characterize Dinosauria and dinosauriforms evolved much earlier, soon after the bird-crocodylian split, and that the earliest avemetatarsalians retained the crocodylian-like ankle morphology and hindlimb proportions of stem archosaurs and early pseudosuchians. Early avemetatarsalians were substantially more species-rich, widely geographically distributed and morphologically diverse than previously recognized. Moreover, several early dinosauromorphs that were previously used as models to understand dinosaur origins may represent specialized forms rather than the ancestral avemetatarsalian morphology.

Concepts: Bird, Reptile, Cladistics, Fossil, Dinosaur, Triassic, Archosaur, Archosauromorpha


Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1) covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes), and 2) open nests, in which eggs are exposed in the nest and brooded (as in most birds). Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity) of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1) covered nests are likely the primitive condition for dinosaurs (and probably archosaurs), and 2) open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids) were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment. Open nests with fully exposed eggs only became widespread among Euornithes. A potential co-evolution of open nests and brooding behavior among maniraptorans may have freed theropods from the ground-based restrictions inherent to covered nests and allowed the exploitation of alternate nesting locations. These changes in nesting styles and behaviors thus may have played a role in the evolutionary success of maniraptorans (including birds).

Concepts: Evolution, Bird, Extinction, Nest, Dinosaur, Bird nest, Archosaur, Rauisuchia


The vertebrate recovery after the end-Permian mass extinction can be approached through the ichnological record, which is much more abundant than body fossils. The late Olenekian (Early Triassic) tetrapod ichnoassemblage of the Catalan Pyrenean Basin is the most complete and diverse of this age from Western Tethys. This extensional basin, composed of several depocenters, was formed in the latest phases of the Variscan orogeny (Pangea breakup) and was infilled by braided and meandering fluvial systems of the red-beds Buntsandstein facies. Abundant and diverse tetrapod ichnites are recorded in these facies, including Prorotodactylus mesaxonichnus isp. nov. (tracks possibly produced by euparkeriids), cf. Rotodactylus, at least two large chirotheriid morphotypes (archosauriform trackmakers), Rhynchosauroides cf. schochardti, two other undetermined Rhynchosauroides forms, an undetermined Morphotype A (archosauromorph trackmakers) and two types of Characichnos isp. (swimming traces, here associated to archosauromorph trackmakers). The Pyrenean ichnoassemblage suggests a relatively homogeneous ichnofaunal composition through the late Early Triassic of Central Pangea, characterized by the presence of Prorotodactylus and Rotodactylus. Small archosauromorph tracks dominate and present a wide distribution through the different fluviatile facies of the Triassic Pyrenean Basin, with large archosaurian footprints being present in a lesser degree. Archosauromorphs radiated and diversified through the Triassic vertebrate recovery, which ultimately lead to the archosaur and dinosaur dominance of the Mesozoic.

Concepts: Dinosaur, Carboniferous, Pyrenees, Triassic, Archosaur, Permian, Archosauromorpha, Devonian


Dinosauromorpha includes dinosaurs and other much less diverse dinosaur precursors of Triassic age, such as lagerpetids [1]. Joint occurrences of these taxa with dinosaurs are rare but more common during the latest part of that period (Norian-Rhaetian, 228-201 million years ago [mya]) [2, 3]. In contrast, the new lagerpetid and saurischian dinosaur described here were unearthed from one of the oldest rock units with dinosaur fossils worldwide, the Carnian (237-228 mya) Santa Maria Formation of south Brazil [4], a record only matched in age by much more fragmentary remains from Argentina [5]. This is the first time nearly complete dinosaur and non-dinosaur dinosauromorph remains are found together in the same excavation, clearly showing that these animals were contemporaries since the first stages of dinosaur evolution. The new lagerpetid preserves the first skull, scapular and forelimb elements, plus associated vertebrae, known for the group, revealing how dinosaurs acquired several of their typical anatomical traits. Furthermore, a novel phylogenetic analysis shows the new dinosaur as the most basal Sauropodomorpha. Its plesiomorphic teeth, strictly adapted to faunivory, provide crucial data to infer the feeding behavior of the first dinosaurs.

Concepts: Fossil, Dinosaur, Sauropodomorpha, Saurischia, Triassic, Carnian, Archosaur, Norian


Dinosaurs thrived and reproduced in various regions worldwide, including the Arctic. In order to understand their nesting in diverse or extreme environments, the relationships between nests, nesting environments, and incubation methods in extant archosaurs were investigated. Statistical analyses reveal that species of extant covered nesters (i.e., crocodylians and megapodes) preferentially select specific sediments/substrates as a function of their nesting style and incubation heat sources. Relationships between dinosaur eggs and the sediments in which they occur reveal that hadrosaurs and some sauropods (i.e., megaloolithid eggs) built organic-rich mound nests that relied on microbial decay for incubation, whereas other sauropods (i.e., faveoloolithid eggs) built sandy in-filled hole nests that relied on solar or potentially geothermal heat for incubation. Paleogeographic distribution of mound nests and sandy in-filled hole nests in dinosaurs reveals these nest types produced sufficient incubation heat to be successful up to mid latitudes (≤47°), 10° higher than covered nesters today. However, only mound nesting and likely brooding could have produced sufficient incubation heat for nesting above the polar circle (>66°). As a result, differences in nesting styles may have placed restrictions on the reproduction of dinosaurs and their dispersal at high latitudes.

Concepts: Bird, Arctic Ocean, Nest, Dinosaur, Saurischia, Bird nest, Archosaur, Rauisuchia