SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Archaic Homo sapiens

26

The Out-of-Africa model holds that anatomically modern humans (AMH) evolved and dispersed from Africa into Asia, and later Europe. Palaeoanthropological evidence from the Near East assumes great importance, but AMH remains from the region are extremely scarce. ‘Egbert’, a now-lost AMH fossil from the key site of Ksar Akil (Lebanon) and ‘Ethelruda’, a recently re-discovered fragmentary maxilla from the same site, are two rare examples where human fossils are directly linked with early Upper Palaeolithic archaeological assemblages. Here we radiocarbon date the contexts from which Egbert and Ethelruda were recovered, as well as the levels above and below the findspots. In the absence of well-preserved organic materials, we primarily used marine shell beads, often regarded as indicative of behavioural modernity. Bayesian modelling allows for the construction of a chronostratigraphic framework for Ksar Akil, which supports several conclusions. The model-generated age estimates place Egbert between 40.8-39.2 ka cal BP (68.2% prob.) and Ethelruda between 42.4-41.7 ka cal BP (68.2% prob.). This indicates that Egbert is of an age comparable to that of the oldest directly-dated European AMH (Peştera cu Oase). Ethelruda is older, but on current estimates not older than the modern human teeth from Cavallo in Italy. The dating of the so-called “transitional” or Initial Upper Palaeolithic layers of the site may indicate that the passage from the Middle to Upper Palaeolithic at Ksar Akil, and possibly in the wider northern Levant, occurred later than previously estimated, casting some doubts on the assumed singular role of the region as a locus for human dispersals into Europe. Finally, tentative interpretations of the fossil’s taxonomy, combined with the chronometric dating of Ethelruda’s context, provides evidence that the transitional/IUP industries of Europe and the Levant, or at least some of them, may be the result of early modern human migration(s).

Concepts: Human, Neanderthal, Human evolution, Prehistory, Archaic Homo sapiens, Upper Paleolithic, Humans, Homo sapiens idaltu

24

Admixture between early modern humans and Neandertals approximately 50,000-60,000 years ago has resulted in 1.5-4% Neandertal ancestry in the genomes of present-day non-Africans. Evidence is accumulating that some of these archaic alleles are advantageous for modern humans, while others are deleterious; however, the major mechanism by which these archaic alleles act has not been fully explored.

Concepts: Human, Science, Neanderthal, Human evolution, Archaic Homo sapiens, Early modern Europe, Humans, Anatomically modern humans

23

We have previously described hominin remains with numerous archaic traits from two localities (Maludong and Longlin Cave) in Southwest China dating to the Pleistocene-Holocene transition. If correct, this finding has important implications for understanding the late phases of human evolution. Alternative interpretations have suggested these fossils instead fit within the normal range of variation for early modern humans in East Asia. Here we test this proposition, consider the role of size-shape scaling, and more broadly assess the affinities of the Longlin 1 (LL1) cranium by comparing it to modern human and archaic hominin crania. The shape of LL1 is found to be highly unusual, but on balance shows strongest affinities to early modern humans, lacking obvious similarities to early East Asians specifically. We conclude that a scenario of hybridization with archaic hominins best explains the highly unusual morphology of LL1, possibly even occurring as late as the early Holocene.

Concepts: Human, Hominidae, Chimpanzee, Human evolution, Prehistory, Homininae, Archaic Homo sapiens, Hominini

23

In the last few years, two paradigms underlying human evolution have crumbled. Modern humans have not totally replaced previous hominins without any admixture, and the expected signatures of adaptations to new environments are surprisingly lacking at the genomic level. Here we review current evidence about archaic admixture and lack of strong selective sweeps in humans. We underline the need to properly model differential admixture in various populations to correctly reconstruct past demography. We also stress the importance of taking into account the spatial dimension of human evolution, which proceeded by a series of range expansions that could have promoted both the introgression of archaic genes and background selection.

Concepts: Genetics, Human, Natural selection, Species, Hominidae, Chimpanzee, Human evolution, Archaic Homo sapiens

21

The earliest anatomically modern humans in Europe are thought to have appeared around 43,000-42,000 calendar years before present (43-42 kyr cal BP), by association with Aurignacian sites and lithic assemblages assumed to have been made by modern humans rather than by Neanderthals. However, the actual physical evidence for modern humans is extremely rare, and direct dates reach no farther back than about 41-39 kyr cal BP, leaving a gap. Here we show, using stratigraphic, chronological and archaeological data, that a fragment of human maxilla from the Kent’s Cavern site, UK, dates to the earlier period. The maxilla (KC4), which was excavated in 1927, was initially diagnosed as Upper Palaeolithic modern human. In 1989, it was directly radiocarbon dated by accelerator mass spectrometry to 36.4-34.7 kyr cal BP. Using a Bayesian analysis of new ultrafiltered bone collagen dates in an ordered stratigraphic sequence at the site, we show that this date is a considerable underestimate. Instead, KC4 dates to 44.2-41.5 kyr cal BP. This makes it older than any other equivalently dated modern human specimen and directly contemporary with the latest European Neanderthals, thus making its taxonomic attribution crucial. We also show that in 13 dental traits KC4 possesses modern human rather than Neanderthal characteristics; three other traits show Neanderthal affinities and a further seven are ambiguous. KC4 therefore represents the oldest known anatomically modern human fossil in northwestern Europe, fills a key gap between the earliest dated Aurignacian remains and the earliest human skeletal remains, and demonstrates the wide and rapid dispersal of early modern humans across Europe more than 40 kyr ago.

Concepts: Human, Neanderthal, Human evolution, Pleistocene, Archaic Homo sapiens, Humans, Anatomically modern humans, Homo sapiens idaltu

19

The Lower to Middle Paleolithic transition (~400,000 to 200,000 years ago) is marked by technical, behavioral, and anatomical changes among hominin populations throughout Africa and Eurasia. The replacement of bifacial stone tools, such as handaxes, by tools made on flakes detached from Levallois cores documents the most important conceptual shift in stone tool production strategies since the advent of bifacial technology more than one million years earlier and has been argued to result from the expansion of archaic Homo sapiens out of Africa. Our data from Nor Geghi 1, Armenia, record the earliest synchronic use of bifacial and Levallois technology outside Africa and are consistent with the hypothesis that this transition occurred independently within geographically dispersed, technologically precocious hominin populations with a shared technological ancestry.

Concepts: Human, Human evolution, Stone Age, Tool, Prehistory, Archaic Homo sapiens, Upper Paleolithic, Middle Stone Age

17

The postcranial skeleton of modern Homo sapiens is relatively gracile compared with other hominoids and earlier hominins. This gracility predisposes contemporary humans to osteoporosis and increased fracture risk. Explanations for this gracility include reduced levels of physical activity, the dissipation of load through enlarged joint surfaces, and selection for systemic physiological characteristics that differentiate modern humans from other primates. This study considered the skeletal remains of four behaviorally diverse recent human populations and a large sample of extant primates to assess variation in trabecular bone structure in the human hip joint. Proximal femur trabecular bone structure was quantified from microCT data for 229 individuals from 31 extant primate taxa and 59 individuals from four distinct archaeological human populations representing sedentary agriculturalists and mobile foragers. Analyses of mass-corrected trabecular bone variables reveal that the forager populations had significantly higher bone volume fraction, thicker trabeculae, and consequently lower relative bone surface area compared with the two agriculturalist groups. There were no significant differences between the agriculturalist and forager populations for trabecular spacing, number, or degree of anisotropy. These results reveal a correspondence between human behavior and bone structure in the proximal femur, indicating that more highly mobile human populations have trabecular bone structure similar to what would be expected for wild nonhuman primates of the same body mass. These results strongly emphasize the importance of physical activity and exercise for bone health and the attenuation of age-related bone loss.

Concepts: Bone, Human, Agriculture, Primate, Hominidae, World population, Human evolution, Archaic Homo sapiens

12

Anatomically modern humans replaced Neanderthals in Europe around 40,000 years ago. The demise of the Neanderthals and the nature of the possible relationship with anatomically modern humans has captured our imagination and stimulated research for more than a century now. Recent chronological studies suggest a possible overlap between Neanderthals and anatomically modern humans of more than 5,000 years. Analyses of ancient genome sequences from both groups have shown that they interbred multiple times, including in Europe. A potential place of interbreeding is the notable Palaeolithic site of Riparo Mezzena in Northern Italy. In order to improve our understanding of prehistoric occupation at Mezzena, we analysed the human mandible and several cranial fragments from the site using radiocarbon dating, ancient DNA, ZooMS and isotope analyses. We also performed a more detailed investigation of the lithic assemblage of layer I. Surprisingly we found that the Riparo Mezzena mandible is not from a Neanderthal but belonged to an anatomically modern human. Furthermore, we found no evidence for the presence of Neanderthal remains among 11 of the 13 cranial and post-cranial fragments re-investigated in this study.

Concepts: Human, Carbon, Neanderthal, Human evolution, Pleistocene, Prehistory, Archaic Homo sapiens, Humans

12

The first settlement of Europe by modern humans is thought to have occurred between 50,000 and 40,000 calendar years ago (cal B.P.). In Europe, modern human remains of this time period are scarce and often are not associated with archaeology or originate from old excavations with no contextual information. Hence, the behavior of the first modern humans in Europe is still unknown. Aurignacian assemblages-demonstrably made by modern humans-are commonly used as proxies for the presence of fully behaviorally and anatomically modern humans. The site of Willendorf II (Austria) is well known for its Early Upper Paleolithic horizons, which are among the oldest in Europe. However, their age and attribution to the Aurignacian remain an issue of debate. Here, we show that archaeological horizon 3 (AH 3) consists of faunal remains and Early Aurignacian lithic artifacts. By using stratigraphic, paleoenvironmental, and chronological data, AH 3 is ascribed to the onset of Greenland Interstadial 11, around 43,500 cal B.P., and thus is older than any other Aurignacian assemblage. Furthermore, the AH 3 assemblage overlaps with the latest directly radiocarbon-dated Neanderthal remains, suggesting that Neanderthal and modern human presence overlapped in Europe for some millennia, possibly at rather close geographical range. Most importantly, for the first time to our knowledge, we have a high-resolution environmental context for an Early Aurignacian site in Central Europe, demonstrating an early appearance of behaviorally modern humans in a medium-cold steppe-type environment with some boreal trees along valleys around 43,500 cal B.P.

Concepts: Human, Neanderthal, Human evolution, Pleistocene, Archaeology, Archaic Homo sapiens, Humans, Homo sapiens idaltu

11

It has been argued recently that the initial dispersal of anatomically modern humans from Africa to southern Asia occurred before the volcanic “supereruption” of the Mount Toba volcano (Sumatra) at ∼74,000 y before present (B.P.)-possibly as early as 120,000 y B.P. We show here that this “pre-Toba” dispersal model is in serious conflict with both the most recent genetic evidence from both Africa and Asia and the archaeological evidence from South Asian sites. We present an alternative model based on a combination of genetic analyses and recent archaeological evidence from South Asia and Africa. These data support a coastally oriented dispersal of modern humans from eastern Africa to southern Asia ∼60-50 thousand years ago (ka). This was associated with distinctively African microlithic and “backed-segment” technologies analogous to the African “Howiesons Poort” and related technologies, together with a range of distinctively “modern” cultural and symbolic features (highly shaped bone tools, personal ornaments, abstract artistic motifs, microblade technology, etc.), similar to those that accompanied the replacement of “archaic” Neanderthal by anatomically modern human populations in other regions of western Eurasia at a broadly similar date.

Concepts: Human, Africa, Indian Ocean, Asia, Human evolution, Prehistory, Archaic Homo sapiens, Humans