SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Arachnid

311

Spiders are an important animal group, with a long history. Details of their origins remain limited, with little knowledge of their stem group, and no insights into the sequence of character acquisition during spider evolution. We describe a new fossil arachnid,Idmonarachne brasierigen. et sp. nov. from the Late Carboniferous (Stephanian,ca305-299 Ma) of Montceau-les-Mines, France. It is three-dimensionally preserved within a siderite concretion, allowing both laboratory- and synchrotron-based phase-contrast computed tomography reconstruction. The latter is a first for siderite-hosted fossils and has allowed us to investigate fine anatomical details. Although distinctly spider-like in habitus, this remarkable fossil lacks a key diagnostic character of Araneae: spinnerets on the underside of the opisthosoma. It also lacks a flagelliform telson found in the recently recognized, spider-related, Devonian-Permian Uraraneida. Cladistic analysis resolves our new fossil as sister group to the spiders: the spider stem-group comprises the uraraneids andI. brasieri While we are unable to demonstrate the presence of spigots in this fossil, the recovered phylogeny suggests the earliest character to evolve on the spider stem-group is the secretion of silk. This would have been followed by the loss of a flagelliform telson, and then the ability to spin silk using spinnerets. This last innovation defines the true spiders, significantly post-dates the origins of silk, and may be a key to the group’s success. The Montceau-les-Mines locality has previously yielded a mesothele spider (with spinnerets). Evidently, Late Palaeozoic spiders lived alongside Palaeozoic arachnid grades which approached the spider condition, but did not express the full suite of crown-group autapomorphies.

Concepts: Arthropod, Phylogenetics, Clade, Phylum, Arachnid, Spider, Chelicerata, Tarantula

175

The role of predators in food webs extends beyond their ability to kill and consume prey. Such trait-mediated effects occur when signals of the predator influence the behaviour of other animals. Because all spiders are silk-producing carnivores, we hypothesized that silk alone would signal other arthropods and enhance non-lethal effects of spiders. We quantified the herbivory inflicted by two beetle species on green bean plants (Phaseolus vulgaris) in the presence of silkworm silk and spider silk along with no silk controls. Single leaflets were treated and enclosed with herbivores in the laboratory and field. Another set of leaflets were treated and left to experience natural herbivory in the field. Entire plants in the field were treated with silk and enclosed with herbivores or left exposed to herbivory. In all cases, the lowest levels of herbivory occurred with spider silk treatments and, in general, silkworm silk produced intermediate levels of leaf damage. These results suggest that silk may be a mechanism for the trait-mediated impacts of spiders and that it might contribute to integrated pest management programmes.

Concepts: Insect, Predation, Animal, Arachnid, Silk, Spider, Common bean, Bean

170

Overexpression of the transforming growth factor β family signalling molecule smad2 in the airway epithelium provokes enhanced allergen-induced airway remodelling in mice, concomitant with elevated levels of interleukin (IL)-25.

Concepts: Immune system, Asthma, Acari, Arachnid, Mite, House dust mite

167

BACKGROUND: Genomic resources within the phylum Arthropoda are largely limited to the true insects but are beginning to include unexplored subphyla, such as the Crustacea and Chelicerata. Investigations of these understudied taxa uncover high frequencies of orphan genes, which lack detectable sequence homology to genes in pre-existing databases. The ticks (Acari: Chelicerata) are one such understudied taxon for which genomic resources are urgently needed. Ticks are obligate blood-feeders that vector major diseases of humans, domesticated animals, and wildlife. In analyzing a transcriptome of the lone star tick Amblyomma americanum, one of the most abundant disease vectors in the United States, we find a high representation of unannotated sequences. We apply a general framework for quantifying the origin and true representation of unannotated sequences in a dataset and for evaluating the biological significance of orphan genes. RESULTS: Expressed sequence tags (ESTs) were derived from different life stages and populations of A. americanum and combined with ESTs available from GenBank to produce 14,310 ESTs, over twice the number previously available. The vast majority (71%) has no sequence homology to proteins archived in UniProtKB. We show that poor sequence or assembly quality is not a major contributor to this high representation by orphan genes. Moreover, most unannotated sequences are functional: a microarray experiment demonstrates that 59% of functional ESTs are unannotated. Lastly, we attempt to further annotate our EST dataset using genomic datasets from other members of the Acari, including Ixodes scapularis, four other tick species and the mite Tetranychus urticae. We find low homology with these species, consistent with significant divergence within this subclass. CONCLUSIONS: We conclude that the abundance of orphan genes in A. americanum likely results from 1) taxonomic isolation stemming from divergence within the tick lineage and limited genomic resources for ticks and 2) lineage-specific genes needing functional genomic studies to evaluate their association with the unique biology of ticks. The EST sequences described here will contribute substantially to the development of tick genomics. Moreover, the framework provided for the evaluation of orphan genes can guide analyses of future transcriptome sequencing projects.

Concepts: DNA, Genomics, Lyme disease, Tick, Ixodidae, Acari, Arachnid, Amblyomma americanum

150

An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this “liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.

Concepts: Calculus, Liquid, Surface tension, Arachnid, Spider silk, Spider, Wire, Mechanical

139

Few studies addressed trans-regional differences in allergen sensitization between areas within a similar latitudinal range but with distinct geomorphological features. We investigated specific IgE (sIgE) positivity to common allergens in populations from two southern China provinces. Using a uniformed protocol, serum samples were collected from 2778 subjects with suspected atopy in coastal Guangdong and inland Yunnan. The overall prevalence of sIgE positivity were 57.8% (95% CI: 56.0%, 59.6%) from Guangdong vs 60.9% (95% CI: 59.1%, 62.7%) from Yunnan. House dust mite (d1) was the most common allergen in both regions. Among d1-sensitized subjects, only 35.7% (208/583) in Guangdong and 22.9% (147/642) in Yunnan tested positive for d1 alone. Among those poly-sensitized d1-positive subjects, cockroach was the most common co-sensitizing aeroallergen. 41.9% of the d1-sensitized Guangdong subjects showed high-class sIgE reactivity (≥class 4), in contrast to a very low percentage of such reactivity in Yunnan. However, 36.3% of d1-sensitized subjects in Yunnan were concomitantly positive for tree pollen mix. Surprisingly, Yunnan subjects showed high prevalence of sIgE positivity for crabs and shrimps, either by overall or by age-group analysis, compared with their Guangdong counterparts (both P < 0.05). These findings may add to data about local allergies in China and worldwide.

Concepts: Asthma, Allergy, Atopy, Allergen, People's Republic of China, Arachnid, Mite, House dust mite

107

Shrimp and house dust mite (HDM) allergies are common in Canadians. Often, both of these allergies occur in the same patient. This may be due to homology of tropomyosin or other potentially shared proteins. The aim of our study was to assess the frequency of house dust mite sensitization in a shrimp allergic Canadian population.

Concepts: Asthma, Canada, Acari, Arachnid, Mite, House dust mite, Ontario, Southern Ontario

62

Spiders (Araneae) are a hugely successful lineage with a long history. Details of their origins remain obscure, with little knowledge of their stem group and few insights into the sequence of character acquisition during spider evolution. Here, we describe Chimerarachne yingi gen. et sp. nov., a remarkable arachnid from the mid-Cretaceous (approximately 100 million years ago) Burmese amber of Myanmar, which documents a key transition stage in spider evolution. Like uraraneids, the two fossils available retain a segmented opisthosoma bearing a whip-like telson, but also preserve two traditional synapomorphies for Araneae: a male pedipalp modified for sperm transfer and well-defined spinnerets resembling those of modern mesothele spiders. This unique character combination resolves C. yingi within a clade including both Araneae and Uraraneida; however, its exact position relative to these orders is sensitive to different parameters of our phylogenetic analysis. Our new fossil most likely represents the earliest branch of the Araneae, and implies that there was a lineage of tailed spiders that presumably originated in the Palaeozoic and survived at least into the Cretaceous of Southeast Asia.

Concepts: Insect, Phylogenetics, Arachnid, Fossil, Spider, Chelicerata, Pedipalp, Opisthosoma

54

Ticks in the nostrils of humans visiting equatorial African forests have been reported sporadically for decades, but their taxonomy and natural history have remained obscure. We report human infestation with a nostril tick in Kibale National Park, Uganda, coincident with infestation of chimpanzees in the same location with nostril ticks, as shown by high-resolution digital photography. The human-derived nostril tick was identified morphologically and genetically as a nymph of the genus Amblyomma, but the mitochondrial 12S ribosomal RNA or the nuclear intergenic transcribed spacer 2 DNA sequences of the specimen were not represented in GenBank. These ticks may represent a previously uncharacterized species that is adapted to infesting chimpanzee nostrils as a defense against grooming. Ticks that feed upon apes and humans may facilitate cross-species transmission of pathogens, and the risk of exposure is likely elevated for persons who frequent ape habitats.

Concepts: DNA, Human, Bacteria, Hominidae, Chimpanzee, Gorilla, Arachnid, Amblyomma americanum

39

Ticks are the major vectors of most disease-causing agents to humans, companion animals and wildlife. Moreover, ticks transmit a greater variety of pathogenic agents than any other blood-feeding arthropod. Ticks have been expanding their geographic ranges in recent decades largely due to climate change. Furthermore, tick populations in many areas of their past and even newly established localities have increased in abundance. These dynamic changes present new and increasing severe public health threats to humans, livestock and companion animals in areas where they were previously unknown or were considered to be of minor importance. Here in this review, the geographic status of four representative tick species are discussed in relation to these public health concerns, namely, the American dog tick,Dermacentor variabilis, the lone star tick,Amblyomma americanum, the Gulf Coast Tick,Amblyomma maculatumand the black-legged tick,Ixodes scapularis. Both biotic and abiotic factors that may influence future range expansion and successful colony formation in new habitats are discussed.

Concepts: Lyme disease, Tick, Ixodes scapularis, Arachnid, North America, Dog, Biotic component, Abiotic component