SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Arachis

172

Only a few genetic maps based on recombinant inbred line (RIL) and backcross (BC) populations have been developed for tetraploid groundnut. The marker density, however, is not very satisfactory especially in the context of large genome size (2800 Mb/1C) and 20 linkage groups (LGs). Therefore, using marker segregation data for 10 RILs and one BC population from the international groundnut community, with the help of common markers across different populations, a reference consensus genetic map has been developed. This map is comprised of 897 marker loci including 895 simple sequence repeat (SSR) and 2 cleaved amplified polymorphic sequence (CAPS) loci distributed on 20 LGs (a01-a10 and b01-b10) spanning a map distance of 3, 863.6 cM with an average map density of 4.4 cM. The highest numbers of markers (70) were integrated on a01 and the least number of markers (21) on b09. The marker density, however, was lowest (6.4 cM) on a08 and highest (2.5 cM) on a01. The reference consensus map has been divided into 20 cM long 203 BINs. These BINs carry 1 (a10_02, a10_08 and a10_09) to 20 (a10_04) loci with an average of 4 marker loci per BIN. Although the polymorphism information content (PIC) value was available for 526 markers in 190 BINs, 36 and 111 BINs have at least one marker with >0.70 and >0.50 PIC values, respectively. This information will be useful for selecting highly informative and uniformly distributed markers for developing new genetic maps, background selection and diversity analysis. Most importantly, this reference consensus map will serve as a reliable reference for aligning new genetic and physical maps, performing QTL analysis in a multi-populations design, evaluating the genetic background effect on QTL expression, and serving other genetic and molecular breeding activities in groundnut.

Concepts: DNA, Gene, Genetics, Genome, Genetic linkage, Map, Peanut, Arachis

170

BACKGROUND: Cultivated peanut (Arachis hypogaea) is an allotetraploid species whose ancestral genomes are most likely derived from the A-genome species, A. duranensis, and the B-genome species, A. ipaensis. The very recent (several millennia) evolutionary origin of A. hypogaea has imposed a bottleneck for allelic and phenotypic diversity within the cultigen. However, wild, diploid relatives are a rich source of alleles that could be used for crop improvement and their simpler genomes can be more easily analyzed while providing insight into the structure of the allotetraploid peanut genome. The objective of this research was to establish a high-density genetic map of the diploid species A. duranensis based on de novo generated EST databases. Arachis duranensis was chosen for mapping because it is the A-genome progenitor of cultivated peanut and also in order to circumvent the confounding effects of gene duplication associated with allopolyploidy in A. hypogaea. RESULTS: More than one million expressed sequence tag (EST) sequences generated from normalized cDNA libraries of A. duranensis were assembled into 81,116 unique transcripts. Mining this dataset, 1236 EST-SNP markers were developed between two A. duranensis accessions, PI 475887 and Grif 15036. An additional 300 SNP markers also were developed from genomic sequences representing conserved legume orthologs. Of the 1536 SNP markers, 1054 were placed on a genetic map. In addition, 598 EST-SSR markers identified in A. hypogaea assemblies were included in the map along with 37 disease resistance gene candidate (RGC) and 35 other previously published markers. In total, 1724 markers spanning 1081.3 cM over 10 linkage groups were mapped. Gene sequences that provided mapped markers were annotated using similarity searches in three different databases, and gene ontology descriptions were determined using the Medicago Gene Atlas and TAIR databases. Synteny analysis between A. duranensis, Medicago and Glycine revealed significant stretches of conserved gene clusters spread across the peanut genome. A higher level of colinearity was detected between A. duranensis and Glycine than with Medicago. CONCLUSIONS: The first high-density, gene-based linkage map for A. duranensis was generated that can serve as a reference map for both wild and cultivated Arachis species. The markers developed here are valuable resources for the peanut, and more broadly, to the legume research community. The A-genome map will have utility for fine mapping in other peanut species and has already had application to mapping a nematode resistance gene that was introgressed into A. hypogaea from A. cardenasii.

Concepts: DNA, Gene, Evolution, Genome, Genetic linkage, Fabaceae, Peanut, Arachis

168

The peanut (Arachis hypogaea) is an important oil crop. Breeding for high oil content is becoming increasingly important. Wild Arachis species have been reported to harbor genes for many valuable traits that may enable the improvement of cultivated Arachis hypogaea, such as resistance to pests and disease. However, only limited information is available on variation in oil content. In the present study, a collection of 72 wild Arachis accessions representing 19 species and 3 cultivated peanut accessions were genotyped using 136 genome-wide SSR markers and phenotyped for oil content over three growing seasons. The wild Arachis accessions showed abundant diversity across the 19 species. A. duranensis exhibited the highest diversity, with a Shannon-Weaver diversity index of 0.35. A total of 129 unique alleles were detected in the species studied. A. rigonii exhibited the largest number of unique alleles (75), indicating that this species is highly differentiated. AMOVA and genetic distance analyses confirmed the genetic differentiation between the wild Arachis species. The majority of SSR alleles were detected exclusively in the wild species and not in A. hypogaea, indicating that directional selection or the hitchhiking effect has played an important role in the domestication of the cultivated peanut. The 75 accessions were grouped into three clusters based on population structure and phylogenic analysis, consistent with their taxonomic sections, species and genome types. A. villosa and A. batizocoi were grouped with A. hypogaea, suggesting the close relationship between these two diploid wild species and the cultivated peanut. Considerable phenotypic variation in oil content was observed among different sections and species. Nine alleles were identified as associated with oil content based on association analysis, of these, three alleles were associated with higher oil content but were absent in the cultivated peanut. The results demonstrated that there is great potential to increase the oil content in A. hypogaea by using the wild Arachis germplasm.

Concepts: Gene, Evolution, Fabaceae, Peanut, Arachis, Diversity index, Shannon index, Measurement of biodiversity

168

BACKGROUND: Cultivated peanut or groundnut (Arachis hypogaea L.) is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40). Both the low level of genetic variation within the cultivated gene pool and its polyploid nature limit the utilization of molecular markers to explore genome structure and facilitate genetic improvement. Nevertheless, a wealth of genetic diversity exists in diploid Arachis species (2n = 2x = 20), which represent a valuable gene pool for cultivated peanut improvement. Interspecific populations have been used widely for genetic mapping in diploid species of Arachis. However, an intraspecific mapping strategy was essential to detect chromosomal rearrangements among species that could be obscured by mapping in interspecific populations. To develop intraspecific reference linkage maps and gain insights into karyotypic evolution within the genus, we comparatively mapped the A- and B-genome diploid species using intraspecific F2 populations. Exploring genome organization among diploid peanut species by comparative mapping will enhance our understanding of the cultivated tetraploid peanut genome. Moreover, new sources of molecular markers that are highly transferable between species and developed from expressed genes will be required to construct saturated genetic maps for peanut. RESULTS: A total of 2,138 EST-SSR (expressed sequence tag-simple sequence repeat) markers were developed by mining a tetraploid peanut EST assembly including 101,132 unigenes (37,916 contigs and 63,216 singletons) derived from 70,771 long-read (Sanger) and 270,957 short-read (454) sequences. A set of 97 SSR markers were also developed by mining 9,517 genomic survey sequences of Arachis. An SSR-based intraspecific linkage map was constructed using an F2 population derived from a cross between K 9484 (PI 298639) and GKBSPSc 30081 (PI 468327) in the B - genome species A. batizocoi. A high degree of macrosynteny was observed when comparing the homoeologous linkage groups between A (A. duranensis) and B (A. batizocoi) genomes. Comparison of the A - and B - genome genetic linkage maps also showed a total of five inversions and one major reciprocal translocation between two pairs of chromosomes under our current mapping resolution. CONCLUSIONS: Our findings will contribute to understanding tetraploid peanut genome origin and evolution and eventually promote its genetic improvement. The newly developed EST-SSR markers will enrich current molecular marker resources in peanut.

Concepts: DNA, Gene, Genetics, Genome, Genetic linkage, William Bateson, Peanut, Arachis

48

Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45-56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, and 50,324 protein-coding gene models. Patterns of gene duplication suggest the peanut lineage has been affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion in only three seed-to-seed generations since their formation by human hands, indicating that this process begins virtually immediately following polyploid formation. Expansion of some specific gene families suggests roles in the unusual subterranean fructification of Arachis For example, the S1Fa-like transcription factor family has 126 Arachis members, in contrast to no more than five members in other examined plant species, and is more highly expressed in roots and etiolated seedlings than green leaves. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants, informing peanut genetic improvement and aiding deeper sequencing of Arachis diversity.

Concepts: DNA, Gene, Genetics, Organism, Genome, Seed, Peanut, Arachis

34

BACKGROUND: A diagnosis of peanut allergy has a major impact on an individual’s quality of life. Exposure to even small amounts of peanut can trigger serious reactions. Common cleaning agents can easily remove peanut allergen from surfaces such as table tops. Parents of children with peanut allergy frequently ask if peanut allergen can persist on surfaces if they have not been cleaned.Objectives: The purpose of this study was to determine the persistence of peanut allergen on a typical table surface over time. METHODS: 5 mL of peanut butter was evenly smeared on a 12 inch by 12 inch (30.5 by 30.5 cm) square on a nonporous (laminated plastic) table surface. Five squares were prepared in the same manner. The table was kept in a regular hospital office at room temperature and ambient lighting. No cleaning occurred for 110 days. Samples were taken at regular intervals from different areas each time. A monoclonal-based ELISA for arachis hypogaea allergen 1 (Ara h 1), range of detection 1.95-2000 ng/mL, was used to assess peanut allergen on the table surface. RESULTS: At baseline, there was no detectable Ara h 1 allergen. Immediately post application and for 110 days of collecting, detectable Ara h 1 was found each time a sample was taken. There was no obvious allergen degradation over time. Active cleaning of the contaminated surface with a commercial cleaning wipe resulted in no detectable Ara h 1 allergen. CONCLUSIONS: Peanut allergen is very robust. Detectable Ara h 1 was present on the table surface for 110 days. Active cleaning of peanut contaminated surfaces easily removed peanut residue and allergen. Regular cleaning of surfaces before and after eating should be reinforced as a safety measure for all individuals with peanut allergy.

Concepts: Allergy, Fabaceae, Food allergy, Allergology, Peanut, Arachis, Peanut butter, Peanuts

28

Background and Aims The genus Arachis contains 80 described species. Section Arachis is of particular interest because it includes cultivated peanut, an allotetraploid, and closely related wild species, most of which are diploids. This study aimed to analyse the genetic relationships of multiple accessions of section Arachis species using two complementary methods. Microsatellites allowed the analysis of inter- and intraspecific variability. Intron sequences from single-copy genes allowed phylogenetic analysis including the separation of the allotetraploid genome components. Methods Intron sequences and microsatellite markers were used to reconstruct phylogenetic relationships in section Arachis through maximum parsimony and genetic distance analyses. Key Results Although high intraspecific variability was evident, there was good support for most species. However, some problems were revealed, notably a probable polyphyletic origin for A. kuhlmannii. The validity of the genome groups was well supported. The F, K and D genomes grouped close to the A genome group. The 2n = 18 species grouped closer to the B genome group. The phylogenetic tree based on the intron data strongly indicated that A. duranensis and A. ipaënsis are the ancestors of A. hypogaea and A. monticola. Intron nucleotide substitutions allowed the ages of divergences of the main genome groups to be estimated at a relatively recent 2·3-2·9 million years ago. This age and the number of species described indicate a much higher speciation rate for section Arachis than for legumes in general. Conclusions The analyses revealed relationships between the species and genome groups and showed a generally high level of intraspecific genetic diversity. The improved knowledge of species relationships should facilitate the utilization of wild species for peanut improvement. The estimates of speciation rates in section Arachis are high, but not unprecedented. We suggest these high rates may be linked to the peculiar reproductive biology of Arachis.

Concepts: DNA, Gene, Evolution, Organism, Species, Phylogenetics, Peanut, Arachis

26

This study was conducted to determine the release dynamics of a microencapsulated mixture of fipronil and chlorpyrifos in peanut fields and its efficacy against white grubs. The results indicated that microencapsulation significantly stabilized this mixture against degradation in the environment so that a single dose of this microencapsulated formulation applied through seed treatment effectively controlled white grubs throughout the entire growing season. During the experimental course, the concentration of chlorpyrifos in the soil with the microencapsulated formulation was 13.6±9.9 (n = 6) times that of the conventional formulation, and the concentration of fipronil was at least 2.2 times that of the conventional formulation in the soil and peanut roots. However, the residue risks of chlorpyrifos and fipronil in the kernels were different. At harvest, there was a low risk that the residual chlorpyrifos in the kernels exceeded the MRLs (maximum residue limit). In contrast, the amount of residual fipronil in some kernel samples reached the statutory MRL set by the European Union, which suggested that a higher application rate or the repeated application of the microencapsulated fipronil formulation would not be acceptable.

Concepts: European Union, Fabaceae, Fruit, Seed, Peanut, Arachis, Linux kernel, Peanuts

22

Peanut stems and leaves (PSL) have traditionally been used as both a special food and herbal medicine in Asia. The sedative-hypnotic and anxiolytic effects of PSL have been recorded in classical traditional Chinese literature, and more recently, by many other researchers. In a previous study, four sleep-related ingredients (linalool, 5-Hydroxy-4', 7-dimethoxyflavanone, 2'-O-Methylisoliquiritigenin and ferulic acid), among which 5-Hydroxy-4', 7-dimethoxyflavanone, 2'-O-Methylisoliquiritigenin was newly found in the Arachis species, were screened using an Ultra Performance LC system coupled with quadrupole-time of flight mass spectrometry (UPLC-QTOF-MS). In the current study, quantitative examination of the above four ingredients was conducted. Serious fundamental functional studies were done in mice, including locomotor activity, direct sleep tests, pentobarbital-induced sleeping time tests, subthreshold dose of pentobarbital tests and barbital sodium sleep incubation period tests to determine the material base for the sedative-hypnotic and anxiolytic effects of the aqueous extracts of PSL. Furthermore, neurotransmitter levels in three brain regions (cerebrum, cerebellum, brain-stem) were determined using an Ultra Performance LC system coupled with triple quadrupole mass spectrometry (UPLC-QQQ-MS) in order to elucidate the exact mechanism of action. Aqueous extracts of PSL, at a dose of 500mg/kg, based on the previous experience, along with concentrations of the above four functional ingredients (189.86 ppb linalool, 114.75 ppm 5-Hydroxy-4', 7-dimethoxyflavanone, 32.4 ppm 2'-O-Methylisoliquiritigenin and 44.44 ppm ferulic acid), had a sedative-hypnotic effect by affecting neurotransmitter levels in mice. These data demonstrate that these four ingredients are the key functional factors for the sedative-hypnotic and anxiolytic effects of PSL aqueous extracts and that these effects occur via changes in neurotransmitter levels and pathways.

Concepts: Mass spectrometry, Effect, Concentration, Matrix-assisted laser desorption/ionization, Peanut, Arachis, Quadrupole mass analyzer, Barbiturate

10

Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanut’s A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut’s subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut.

Concepts: DNA, Gene, Genetics, Virus, Genome, RNA, Arachis, Aeschynomeneae