Discover the most talked about and latest scientific content & concepts.

Concept: Aquatic ecology


Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001) between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l(-1). For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l(-1) (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified.

Concepts: Water, Water pollution, Ecosystem, Aquatic ecology, Aquatic ecosystem, Systems ecology, Marine pollution, Ecosystems


Biofilms play an important role as a settlement cue for invertebrate larvae and significantly contribute to the nutrient turnover in aquatic ecosystems. Nevertheless, little is known about how biofilm community structure generally responds to environmental changes. This study aimed to identify patterns of bacterial dynamics in coral reef biofilms in response to associated macrofouling community structure, microhabitat (exposed vs. sheltered), seasonality, and eutrophication. Settlement tiles were deployed at four reefs along a cross-shelf eutrophication gradient and were exchanged every 4 months over 20 months. The fouling community composition on the tiles was recorded and the bacterial community structure was assessed with the community fingerprinting technique Automated Ribosomal Intergenic Spacer Analysis (ARISA). Bacterial operational taxonomic unit (OTU) number was higher on exposed tiles, where the fouling community was homogenous and algae-dominated, than in sheltered habitats, which were occupied by a variety of filter feeders. Furthermore, OTU number was also highest in eutrophied near-shore reefs, while seasonal variations in community structure were most pronounced in the oligotrophic mid-shelf reef. In contrast, the macrofouling community structure did not change significantly with seasons. Changes in bacterial community patterns were mostly affected by microhabitat, seasonal and anthropogenically derived changes in nutrient availability, and to a lesser extent by changes in the macrofouling community structure. Path analysis revealed a complex interplay of various environmental and biological factors explaining the spatial and temporal variations in bacterial biofilm communities under natural conditions.

Concepts: DNA, Bacteria, Coral reef, Ecosystem, Biofilm, Cnidaria, Aquatic ecology, Ecosystems


During 2010-11, a La Niña condition prevailed in the tropical Pacific. An intermediate coupled model (ICM) is used to demonstrate a real-time forecast of sea surface temperature (SST) evolution during the event. One of the ICM’s unique features is an empirical parameterization of the temperature of subsurface water entrained into the mixed layer (T(e)). This model provided a good prediction, particularly of the “double dip” evolution of SST in 2011 that followed the La Niña event peak in October 2010. Thermocline feedback, explicitly represented by the relationship between T(e) and sea level in the ICM, is a crucial factor affecting the second cooling in 2011. Large negative T(e) anomalies were observed to persist in the central equatorial domain during 2010-11, inducing a cold SST anomaly to the east during July-August 2011 and leading to the development of a La Niña condition thereafter.

Concepts: Scientific method, Oceanography, Temperature, Aquatic ecology, Cold, Sea surface temperature, Gauge theory, Mixed anomaly


A recent hydrographic survey of the Florida Current at 27°N revealed an enhanced upward flux of nutrients along the Florida coast. Geostrophic flow of the Gulf Stream through the narrow Florida Straits causes an uplift of the nutricline toward its western edge, shoaling the mixed layers into the base of the euphotic zone. At a nearshore station, nitrate, phosphate, and silicate concentrations reached 19, 1.4, and 10 µM, respectively, at a water depth of 27 m. Furthermore, nutrient vertical gradients below the mixed layer increased with decreasing seafloor depth toward the Florida coast. The estimated vertical eddy diffusive nutrient fluxes across diapycnal surfaces reached 0.40-83.7, 0.03-6.24, and 0.24-45.5 mmol m(-2) d(-1) for nitrate, phosphate, and silicate, respectively, along the shore. Estimated fluxes span a wide range due to the range of diffusivity measured. The lower end of estimated fluxes are comparable to open ocean values, but higher end of estimates are two orders of magnitude greater than those observed in open ocean. The diapycnal nutrient fluxes declined rapidly offshore as a result of decreasing vertical gradients of nutrient concentration.

Concepts: Oceanography, Atlantic Ocean, Ocean, Aquatic ecology, Gulf of Mexico, Photic zone, Gulf Stream, Straits of Florida


Elevated CO2 levels associated with ocean acidification (OA) have been shown to alter behavioural responses in coral reef fishes. However, all studies to date have used stable pCO2 treatments, not considering the substantial diel pCO2 variation that occurs in shallow reef habitats. Here, we reared juvenile damselfish, Acanthochromis polyacanthus, and clownfish, Amphiprion percula, at stable and diel cycling pCO2 treatments in two experiments. As expected, absolute lateralization of A. polyacanthus and response to predator cue of Am. percula were negatively affected in fish reared at stable, elevated pCO2 in both experiments. However, diel pCO2 fluctuations reduced the negative effects of OA on behaviour. Importantly, in experiment two, behavioural abnormalities that were present in fish reared at stable 750 µatm CO2 were largely absent in fish reared at 750 ± 300 µatm CO2. Overall, we show that diel pCO2 cycles can substantially reduce the severity of behavioural abnormalities caused by elevated CO2. Thus, past studies may have over-estimated the impacts of OA on the behavioural performance of coral reef fishes. Furthermore, our results suggest that diel pCO2 cycles will delay the onset of behavioural abnormalities in natural populations.

Concepts: Photosynthesis, Carbon dioxide, Fish, Coral reef, Carbon, Ocean, Aquatic ecology, Pomacentridae


Oxygen-isotope compositions of fossilised planktonic and benthic foraminifera tests are used as proxies for surface- and deep-ocean paleotemperatures, providing a continuous benthic record for the past 115 Ma. However, visually imperceptible processes can alter these proxies during sediment burial. Here, we investigate the diffusion-controlled re-equilibration process with experiments exposing foraminifera tests to elevated pressures and temperatures in isotopically heavy artificial seawater (H2(18)O), followed by scanning electron microscopy and quantitative NanoSIMS imaging: oxygen-isotope compositions changed heterogeneously at submicrometer length scales without any observable modifications of the test ultrastructures. In parallel, numerical modelling of diffusion during burial shows that oxygen-isotope re-equilibration of fossil foraminifera tests can cause significant overestimations of ocean paleotemperatures on a time scale of 10(7) years under natural conditions. Our results suggest that the late Cretaceous and Paleogene deep-ocean and high-latitude surface-ocean temperatures were significantly lower than is generally accepted, thereby explaining the paradox of the low equator-to-pole surface-ocean thermal gradient inferred for these periods.

Concepts: Electron, Scanning electron microscope, Cretaceous, Aquatic ecology, Fossil, Dinosaur, Foraminifera, Geologic time scale


Exponentially rising CO2 (currently ~400 μatm) is driving climate change and causing acidification of both marine and freshwater environments. Physiologists have long known that CO2 directly affects acid-base and ion regulation, respiratory function and aerobic performance in aquatic animals. More recently, many studies have demonstrated that elevated CO2 projected for end of this century (e.g. 800-1000 μatm) can also impact physiology, and have substantial effects on behaviours linked to sensory stimuli (smell, hearing and vision) both having negative implications for fitness and survival. In contrast, the aquaculture industry was farming aquatic animals at CO2 levels that far exceed end-of-century climate change projections (sometimes >10 000 μatm) long before the term ‘ocean acidification’ was coined, with limited detrimental effects reported. It is therefore vital to understand the reasons behind this apparent discrepancy. Potential explanations include 1) the use of ‘control’ CO2 levels in aquaculture studies that go beyond 2100 projections in an ocean acidification context; 2) the relatively benign environment in aquaculture (abundant food, disease protection, absence of predators) compared to the wild; 3) aquaculture species having been chosen due to their natural tolerance to the intensive conditions, including CO2 levels; or 4) the breeding of species within intensive aquaculture having further selected traits that confer tolerance to elevated CO2 . We highlight this issue and outline the insights that climate change and aquaculture science can offer for both marine and freshwater settings. Integrating these two fields will stimulate discussion on the direction of future cross-disciplinary research. In doing so, this article aimed to optimize future research efforts and elucidate effective mitigation strategies for managing the negative impacts of elevated CO2 on future aquatic ecosystems and the sustainability of fish and shellfish aquaculture.

Concepts: Carbon dioxide, Fish, Water, Climate, Ecosystem, Ocean, Carbonic acid, Aquatic ecology


Microplastics result from fragmentation of plastic debris or are released to the environment as pre-production pellets or components of consumer and industrial products. In the oceans, they contribute to the ‘great garbage patches’. They are ingested by many organisms, from protozoa to baleen whales, and pose a threat to the aquatic fauna. Although as much as 80% of marine debris originates from land, little attention was given to the role of rivers as debris pathways to the sea. Worldwide, not a single great river has yet been studied for the surface microplastics load over its length. We report the abundance and composition of microplastics at the surface of the Rhine, one of the largest European rivers. Measurements were made at 11 locations over a stretch of 820 km. Microplastics were found in all samples, with 892,777 particles km (-2) on average. In the Rhine-Ruhr metropolitan area, a peak concentration of 3.9 million particles km (-2) was measured. Microplastics concentrations were diverse along and across the river, reflecting various sources and sinks such as waste water treatment plants, tributaries and weirs. Measures should be implemented to avoid and reduce the pollution with anthropogenic litter in aquatic ecosystems.

Concepts: Water, Water pollution, River, Sewage treatment, Sea, Ocean, Aquatic ecology, Rhine


Plastic waste is a pervasive feature of marine environments, yet little is empirically known about the biological and physical processes that transport plastics through marine ecosystems. To address this need, we conducted in situ feeding studies of microplastic particles (10 to 600 μm in diameter) with the giant larvacean Bathochordaeus stygius. Larvaceans are abundant components of global zooplankton assemblages, regularly build mucus “houses” to filter particulate matter from the surrounding water, and later abandon these structures when clogged. By conducting in situ feeding experiments with remotely operated vehicles, we show that giant larvaceans are able to filter a range of microplastic particles from the water column, ingest, and then package microplastics into their fecal pellets. Microplastics also readily affix to their houses, which have been shown to sink quickly to the seafloor and deliver pulses of carbon to benthic ecosystems. Thus, giant larvaceans can contribute to the vertical flux of microplastics through the rapid sinking of fecal pellets and discarded houses. Larvaceans, and potentially other abundant pelagic filter feeders, may thus comprise a novel biological transport mechanism delivering microplastics from surface waters, through the water column, and to the seafloor. Our findings necessitate the development of tools and sampling methodologies to quantify concentrations and identify environmental microplastics throughout the water column.

Concepts: Oceanography, Natural environment, Benthos, Ocean, Aquatic ecology, Zooplankton, Pelagic zone, Filter feeder


Marine ecosystems worldwide are under threat with many fish species and populations suffering from human over-exploitation. This is greatly impacting global biodiversity, economy and human health. Intriguingly, marine fish are largely surveyed using selective and invasive methods, which are mostly limited to commercial species, and restricted to particular areas with favourable conditions. Furthermore, misidentification of species represents a major problem. Here, we investigate the potential of using metabarcoding of environmental DNA (eDNA) obtained directly from seawater samples to account for marine fish biodiversity. This eDNA approach has recently been used successfully in freshwater environments, but never in marine settings. We isolate eDNA from ½-litre seawater samples collected in a temperate marine ecosystem in Denmark. Using next-generation DNA sequencing of PCR amplicons, we obtain eDNA from 15 different fish species, including both important consumption species, as well as species rarely or never recorded by conventional monitoring. We also detect eDNA from a rare vagrant species in the area; European pilchard (Sardina pilchardus). Additionally, we detect four bird species. Records in national databases confirmed the occurrence of all detected species. To investigate the efficiency of the eDNA approach, we compared its performance with 9 methods conventionally used in marine fish surveys. Promisingly, eDNA covered the fish diversity better than or equal to any of the applied conventional methods. Our study demonstrates that even small samples of seawater contain eDNA from a wide range of local fish species. Finally, in order to examine the potential dispersal of eDNA in oceans, we performed an experiment addressing eDNA degradation in seawater, which shows that even small (100-bp) eDNA fragments degrades beyond detectability within days. Although further studies are needed to validate the eDNA approach in varying environmental conditions, our findings provide a strong proof-of-concept with great perspectives for future monitoring of marine biodiversity and resources.

Concepts: Biodiversity, Fish, Ecology, Natural environment, Fisheries, Ocean, Aquatic ecology, Marine biology