Discover the most talked about and latest scientific content & concepts.

Concept: Aqua regia


To assess the geochemical reactivity and oral bioaccessibility of Cd, Cu, Pb and Zn in urban soils from the Porto area, four extractions were performed including Aqua Regia (AR; pseudototal), 0.43 M HNO(3) (reactive), 0.01 M CaCl(2) (available), and 0.4 M glycine at pH = 1.5, SBET method (oral bioaccessible pool). Oral bioaccessibility in urban soils was higher than in samples from rural, industrial and mining areas which is most likely related to sources of metals and parent materials of corresponding soils. The availability and reactivity were described well by non-linear Freundlich-type equations when considering differences in soil properties. The resulting empirical models are able to predict availability and reactivity and can be used to improve the accuracy of risk assessment. Furthermore, a close 1:1 relationship exists between results from the 0.43 M HNO(3) method and the SBET method which substantially facilitates risk assessment procedures and reduces analytical costs.

Concepts: Scientific method, Evaluation, Risk, Soil, Assessment, Zinc, Risk assessment, Aqua regia


The Thriassio plain is located 25 km west of Athens city, the capital of Greece. Two major towns (Elefsina and Aspropyrgos), heavy industry plants, medium to large-scale manufacturing, logistics plants, and agriculture comprise the main land uses of the studied area. The aim of the present study was to measure the total and available concentrations of Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe in the top soils of the plain, and to asses soil contamination by these metals by using the geoaccumulation index (I (geo)), the enrichment factor (EF), and the availability ratio (AR) as soil pollution indexes. Soil samples were collected from 90 sampling sites, and aqua regia and DTPA extractions were carried out to determine total and available metal forms, respectively. Median total Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe concentrations were 78, 155, 81, 112, 24, 321, 834, 38, and 16 × 10(3) mg kg(-1), respectively. The available fractions showed much lower values with medians of 0.4, 5.6, 1.7, 6.9, 0.8, 5.7, 19.8, 2.1, and 2.9 mg kg(-1). Though median total metal concentrations are not considered as particularly high, the I (geo) and the EF values indicate moderate to heavy soil enrichment. For certain metals such as Cr, Ni, Cu, and Ba, the different distribution patterns between the EFs and the ARs suggest different origin of the total and the available metal forms. The evaluation of the EF and AR data sets for the soils of the two towns further supports the argument that the EFs can well demonstrate the long-term history of soil pollution and that the ARs can adequately portray the recent history of soil pollution.

Concepts: Metal, Zinc, Copper, Environmental remediation, Pollution, Heavy metal music, Soil contamination, Aqua regia


Monitoring stationary source emissions for heavy metals generally requires the use of quartz filters to collect samples because of the high temperature and high moisture sampling environment. The documentary standard method sample preparation technique in Europe, EN 14385, uses digestion in hydrofluoric acid and nitric acid (HF/HNO3) followed by complexing with boric acid (H3BO3) prior to analysis. However, the use of this method presents a number of problems, including significant instrumental drift during analysis caused by the matrix components, often leading to instrument breakdown and downtime for repairs, as well as posing significant health and safety risks. The aim of this work was to develop an alternative sample preparation technique for emissions samples on quartz filters. The alternative techniques considered were: (i) acid digestion in a fluoroboric acid (HBF4) and HNO3 mixture and (ii) acid extraction in an aqua regia (AR) mixture (HCl and HNO3). Assessment of the effectiveness of these options included determination of interferences and signal drift, as well as validating the different methods by measurement of matrix certified reference materials (CRMs), and comparing the results obtained from real test samples and sample blanks to determine limits of detection. The results showed that the HBF4/HNO3 mixture provides the most viable alternative to the documentary standard preparation technique.

Concepts: Acids, Silicon, Standard, Heavy metal music, Nitric acid, Madchester, Aqua regia, Hydrochloric acid


This study compares the mercury distribution in the vapor phase, the phosphor powder and the glass matrix of new and spent fluorescent lamps. The spent fluorescent lamps were obtained at the collection yards of a public waste management company in Hamburg, Germany. An innovative systematic sampling method is utilized to collect six spent and eight corresponding new, off-the-shelf fluorescent lamp samples. The efficiency of several acid digestion methods for the determination of the elemental composition was studied and elemental mass fractions of K, Na, Y, Ca, Ba, Eu, Al, Pb, Mg, Hg, and P were measured. The study also finds aqua regia to be the best reagent for acid digestion. However, no significant difference in mercury distribution was found in the different phases of the new and spent fluorescent lamps.

Concepts: Ultraviolet, Sampling, Fluorescent lamp, Phosphor, Recycling, Aqua regia, Terbium, Lamps


Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. Herein, we overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. These compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest void volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.

Concepts: Crystal, Chemistry, Solid, Materials science, Porosity, Crystallization, Aqua regia


Superhydrophobicity is a remarkable evolutionary adaption manifested by several natural surfaces. Artificial superhydrophobic coatings with good mechanical robustness, substrate adhesion and chemical robustness have been achieved separately. However, a simultaneous demonstration of these features along with resistance to liquid impalement via high-speed drop/jet impact is challenging. Here, we describe all-organic, flexible superhydrophobic nanocomposite coatings that demonstrate strong mechanical robustness under cyclic tape peels and Taber abrasion, sustain exposure to highly corrosive media, namely aqua regia and sodium hydroxide solutions, and can be applied to surfaces through scalable techniques such as spraying and brushing. In addition, the mechanical flexibility of our coatings enables impalement resistance to high-speed drops and turbulent jets at least up to ~35 m s-1and a Weber number of ~43,000. With multifaceted robustness and scalability, these coatings should find potential usage in harsh chemical engineering as well as infrastructure, transport vehicles and communication equipment.

Concepts: Chemical reaction, Fluid dynamics, Chemistry, Engineering, Sodium, Sodium hydroxide, Chlorine, Aqua regia


The valorization of industrial by-products such as red mud became a tempting opportunity, but the understanding of the risks involved is required for the safe utilization of these products. One of the risks involved are the elevated levels of radionuclides (in the 100-1300 Bq/kg range for both the 238U and 232 Th decay chains, but usually lower than 1000 Bq/kg, which is the recommended limit for excemption or clearance according to the EU BSS released in 2013) in red mud that can affect human health. There is no satisfactory answer for the utilization of red mud; the main current solution is still almost exclusively disposal into a landfill. For the safe utilization and deposition of red mud, it is important to be able to assess the leaching behaviour of radionuclides. Because there is no commonly accepted measurement protocol for testing the leaching of radionuclides in the EU a combined measurement protocol was made and tested based on heavy metal leaching methods. The leaching features of red mud were studied by methods compliant with the MSZ-21470-50 Hungarian standard, the CEN/TS 14429 standard and the Tessier sequential extraction method for 232Th and 210Po. The leached solutions were taken to radiochemical separation followed by spontaneous deposition for Po and electrodeposition for Th. The 332 ± 33 Bq/kg 232Th content was minimally mobile, 1% became available for distilled water 1% and 6% for Lakanen-Erviö solution; the Tessier extraction showed minimal mobility in the first four steps, while more than 85% remained in the residue. The 210Po measurements had a severe disturbing effect in many cases, probably due to large amounts of iron present in the red mud, from the 310 ± 12 Bq/kg by aqua regia digestion, distilled water mobilized 23%, while Lakanen-Erviö solution mobilized ∼13%. The proposed protocol is suitable for the analysis of Th and Po leaching behaviour.

Concepts: European Union, Measurement, Extraction, Heavy metal music, Distillation, Aqua regia, Hungary, Distilled water


Self-assembled monolayers (SAMs) have been used to elucidate interactions between cells and material surface chemistry. Gold surfaces modified with oligopeptide SAMs exhibit several unique characteristics, such as cell-repulsive surfaces, micropatterns of cell adhesion and non-adhesion regions for control over cell microenvironments, and dynamic release of cells upon external stimuli under culture conditions. However, basic procedures for the preparation of oligopeptide SAMs, including appropriate cleaning methods of the gold surface before modification, have not been fully established. Because gold surfaces are readily contaminated with organic compounds in the air, cleaning methods may be critical for SAM formation. In this study, we examined the effects of four gold cleaning methods: dilute aqua regia, an ozone water, atmospheric plasma, and UV irradiation. Among the methods, UV irradiation most significantly improved the formation of oligopeptide SAMs in terms of repulsion of cells on the surfaces. We fabricated an apparatus with a UV light source, a rotation table, and HEPA filter, to treat a number of gold substrates simultaneously. Furthermore, UV-cleaned gold substrates were capable of detaching cell sheets without serious cell injury. This may potentially provide a stable and robust approach to oligopeptide SAM-based experiments for biomedical studies.

Concepts: DNA, Human, Ultraviolet, Golgi apparatus, Cell biology, Sun, Cell culture, Aqua regia


Sample inhomogeneity is a severe issue in printed circuit boards especially when we are comparing the bioleaching efficiency. To avoid the ambiguous results obtained due to inhomogeneity in PCBs, 12 similar cell phone chargers (of renowned company) having same make and batch number were collected from scrap market. PCBs obtained from them were used in present studies. Out of these 12, three PCBs were used separately for chemical analysis of PCBs with prior acid digestion in aqua regia. It was found that, 10.8, 68.0, and 710.9 mg/l of Zn, Pb, and Cu were present in it, respectively. Six PCBs were used for bioleaching experiment with two variations, pulverized and non-pulverized. Though the pulverized sample have shown better leaching than non-pulverized one, former has some disadvantages if overall recycling of e-waste (metallic and nonmetallic fraction) is to be addressed. At the end of leaching experiments, copper was recovered using a simple setup of electrodeposition and 92.85% recovery was attained. The acidophiles involved in bioleaching were identified by culture dependent and culture independent techniques such as DGGE and species specific primers in PCR.

Concepts: Chemistry, Zinc, Copper, Battery, Electronic waste, Aqua regia, Printed circuit board, Breadboard


We report on the optimization of interface structure in ZnSnP2 solar cells. The effects of back electrode materials and related interface on photovoltaic performance were investigated. It was clarified that a conventional structure Mo/ZnSnP2 showed a schottky-behaviour, while an ohmic-behaviour was observed in the Cu/ZnSnP2 structure annealed at 300 °C. STEM-EDX analysis suggested that Cu-Sn-P ternary compound was formed at the interface. This compound is considered to play an important role to obtain the ohmic contact between ZnSnP2 and Cu. In addition, it was clarified that the aqua regia etching of ZnSnP2 bulk crystals before chemical bath deposition process for the preparation of buffer layer was effective to remove the layer including lattice defects introduced by mechanical-polishing, which was supported by TEM observations and photoluminescence measurements. This means that the carrier transport across the interface is improved due to the reduced defect at the interface. Consequently, the conversion efficiency of approximately 2 % was achieved with the structure of Al/ZnO;Al/ZnO/CdS/ZnSnP2/Cu, where the values of short circuit current density, JSC, open circuit voltage, VOC and fill factor, FF, were 8.2 mA cm(-2), 0.452 V and 0.533, respectively. However, the value of VOC was largely low considering the bandgap value of ZnSnP2. In order to improve the high conversion efficiency, the optimization of buffer layer material is considered to be essential in the viewpoint of band alignment.

Concepts: Solar cell, Photovoltaics, Crystallographic defect, Band gap, Aqua regia