SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: APOBEC3G

0

SNPs in APOBEC3 alter expression of APOBEC3A/APOBEC3B to affect somatic APOBEC-signature mutations.

Concepts: HIV, DNA, Cancer, Mutation, Viral infectivity factor, APOBEC3G, APOBEC

0

Mammals have co-evolved with lentiviruses for a long time. As evidence, viral infectivity factor (Vif), encoded by lentiviruses, antagonizes the anti-viral action of cellular APOBEC3 of their hosts. Here, we address the co-evolutionary dynamics of bovine APOBEC3 and the following two bovine lentiviruses: bovine immunodeficiency virus (BIV) and Jembrana disease virus (JDV). We determined the sequences of three APOBEC3 genes of bovids belonging to the genera Bos and Bison and showed that bovine APOBEC3Z3 is under a strong positive selection. We found that APOBEC3Z3 of gaur, a bovid in the genus Bos, acquired resistance to JDV Vif-mediated degradation after diverging from the other bovids through conversion of the structural composition of the loop 1 domain. Interestingly, the resistance of gaur APOBEC3Z3 can be attributed to the positive selection of residue 62. This study provides the first evidence, suggesting that a co-evolutionary arms race between bovids and lentiviruses occurred in Asia.

Concepts: Organism, Cattle, Bison, Bovinae, Bos, Gaur, Viral infectivity factor, APOBEC3G

0

RN-18 based viral infectivity factor (Vif), Vif antagonists reduce viral infectivity by rescuing APOBEC3G (A3G) expression and enhancing A3G-dependent Vif degradation. Replacement of amide functionality in RN-18 (IC50 = 6 μM) by isosteric heterocycles resulted in the discovery of a 1,2,3-trizole, 1d (IC50 = 1.2 μM). We identified several potent HIV-1 inhibitors from a 1d based library including 5ax (IC50 = 0.01 μM), 5bx (0.2 μM), 2ey (0.4 μM), 5ey (0.6 μM), and 6bx (0.2 μM).

Concepts: HIV, Viral proteins, Viral infectivity factor, APOBEC3G

0

The human APOBEC3G (A3G) DNA cytosine deaminase restricts and hypermutates DNA-based parasites including HIV-1. The viral infectivity factor (Vif) prevents restriction by triggering A3G degradation. Although the structure of the A3G catalytic domain is known, the structure of the N-terminal Vif-binding domain has proven more elusive. Here, we used evolution- and structure-guided mutagenesis to solubilize the Vif-binding domain of A3G, thus permitting structural determination by NMR spectroscopy. A smaller zinc-coordinating pocket and altered helical packing distinguish the structure from previous catalytic-domain structures and help to explain the reported inactivity of this domain. This soluble A3G N-terminal domain is bound by Vif; this enabled mutagenesis and biochemical experiments, which identified a unique Vif-interacting surface formed by the α1-β1, β2-α2 and β4-α4 loops. This structure sheds new light on the Vif-A3G interaction and provides critical information for future drug development.

Concepts: DNA, Protein, Spectroscopy, Molecular biology, Enzyme, Structure, Viral infectivity factor, APOBEC3G

0

The strong association of APOBEC3 cytidine deaminases with somatic mutations leading to cancers accentuates the importance of their tight intracellular regulation to minimize cellular transformations. We reveal a novel allosteric regulatory mechanism of APOBEC3 enzymes showing that APOBEC3G and APOBEC3A coordination of a secondary zinc ion, reminiscent to ancestral deoxycytidylate deaminases, enhances deamination activity. Zinc binding is pinpointed to loop-3 which whilst highly variable harbors a catalytically essential and spatially conserved asparagine at its N-terminus. We suggest that loop-3 may play a general role in allosterically tuning the activity of zinc-dependent cytidine deaminase family members.

Concepts: DNA, Allosteric regulation, Mutation, RNA, Zinc, Regulation, Carbonic anhydrase, APOBEC3G

0

The viral infectivity factor (Vif) is an HIV accessory protein that counteracts host anti-viral proteins of the APOBEC3 family. Accumulating evidence highlights the pivotal role that accessory HIV proteins have on disease pathogenesis, a fact that has made them targets of interest for novel therapeutic and preventative strategies. Little is known about Vif sequence diversity outside of African or Caucasoid populations. Mexico is home to Americas' third largest HIV-affected population and Mexican Hispanics represent an ever-increasing US minority. This study provides a detailed analysis of the diversity seen in 77 Mexican Vif protein sequences. Phylogenetic analysis shows that most sequences cluster with HIV-1 subtype B, while less than 10% exhibit greater similarity to subtype D and A subtypes. Although most functional motifs are conserved among the Mexican sequences, substantial diversity was seen in some APOBEC-binding sites, the nuclear localisation inhibitory signal and the CBFβ-interaction sites.

Concepts: DNA, Protein, Protein structure, Molecular biology, Spanish language, Mexico, Viral infectivity factor, APOBEC3G

0

The Vif (viral infectivity factor) protein of human immunodeficiency virus type-1 (HIV-1) is critical for HIV-1 infectivity. CBF-β is required for HIV-1 Vif function, as it increases the steady-state level of the HIV-1 Vif protein to promote host restriction factor APOBEC3 degradation. However, the precise mechanism by which CBF-β promotes HIV-1 Vif levels remains unclear. In the present study, we provided evidences that CBF-β promoted steady-state levels of HIV-1 Vif by inhibiting the degradation of HIV-1 Vif through the proteasome pathway. Our results reveal a new mechanism by which a cellular protein supports viral infectivity by inhibiting viral protein degradation.

Concepts: HIV, DNA, Gene, Metabolism, Virus, Viral proteins, Viral infectivity factor, APOBEC3G

0

BackgroundHIV-1 viral infectivity factor (Vif) is an essential accessory protein for HIV-1 replication. The predominant function of Vif is to counteract Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G, A3G), a potent host restriction factor that inhibits HIV-1 replication. Vif mediates the proteasomal degradation of A3G and inhibits A3G translation, thus diminishing the pool of A3G that is available to be packaged into budding virion. Although Vif is robust in degrading A3G, the protection provided against A3G is not absolute. Clinical and laboratory evidence have shown that A3G is not completely excluded from HIV-1 viral particles during HIV-1 replication. It remains unclear why the viral samples are still infectious when A3G has been packaged into the virions.ResultsIn this study, we provide evidence that Vif continues to protect HIV-1 from the deleterious effects of A3G, even after packaging of A3G has occurred. When equal amounts of A3G were packaged into budding virions, the virus expressing functional Vif was more infectious and incurred fewer G to A hypermutations in the second round of infection compared to Vif-deficient virus. A Vif mutant with a defect in viral packaging showed a reduced ability to protect the HIV-1 genome from G to A hypermutations.ConclusionOur data suggest that even packaged A3G is still under the tyranny of Vif. Our work brings to light an additional caveat for any therapy that hopes to exploit the Vif-A3G axis. The ideal strategy would not only enhance A3G viral packaging, but also reduce HIV-1 Vif viral encapsidation.

Concepts: HIV, Protein, Gene, Virus, Genome, Infection, Viral infectivity factor, APOBEC3G

0

Members of the apolipo-protein-B mRNA-editing-enzyme-catalytic polypeptide-like-3 (APOBEC3) innate cellular cytidine deaminase family, particularly APOBEC3F and APOBEC3G, can cause extensive and lethal G-to-A mutations in HIV-1 plus-strand DNA (termed hypermutation). It is unclear if APOBEC3-induced mutations in vivo are always lethal or can occur at sub-lethal levels that increase HIV-1 diversification and viral adaptation to the host. The viral accessory protein Vif counteracts APOBEC3-activity by binding to APOBEC3 and promoting proteasome degradation; however, the efficiency of this interaction varies as a range of hypermutation frequencies are observed in HIV-1 patient DNA. Therefore, we examined ‘footprints’ of APOBEC3G- and APOBEC3F-activity in longitudinal HIV-1 RNA pol sequences from approximately 3,000 chronically infected patients by determining whether G-to-A mutations occurred in motifs that were favored or disfavored by these deaminases. G-to-A mutations were more frequent in APOBEC3G-disfavored than in APOBEC3G-favored contexts. By contrast, mutations in APOBEC3F-disfavored contexts were relatively rare, whereas mutations in contexts favoring APOBEC3F (and possibly other deaminases) occurred 16% more often than average G-to-A mutations. These results were supported by analyses of >500 HIV-1 env sequences from acute/early infection. IMPORTANCE 63: Collectively, our results suggest that APOBEC3G-induced mutagenesis is lethal to HIV-1, whereas mutagenesis caused by APOBEC3F and/or other deaminases may result in sub-lethal mutations that might facilitate viral diversification. Therefore, Vif-specific CTL-responses and drugs that manipulate the interplay between Vif and APOBEC3 may have beneficial or detrimental clinical effects depending on how they affect the binding of Vif to various members of the APOBEC3-family.

Concepts: HIV, Immune system, DNA, Mutation, Causality, RNA, Intensive and extensive properties, APOBEC3G

0

Human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) viral infectivity factor (Vif) form a CRL5 E3 ubiquitin ligase complex to suppress virus restriction by host APOBEC3 (A3) proteins. The primate lentiviral Vif complex is composed of the unique cofactor CBF-β and canonical ligase components Cullin5 (CUL5), ElonginB/C (ELOB/C), and RBX2. However, the mechanism by which the Vif protein of the related lentivirus bovine immunodeficiency virus (BIV) overcomes its host A3 proteins is less clear. In this study, we show that BIV Vif interacts with Cullin2 (CUL2), ELOB/C, and RBX1, but not with CBF-β or CUL5, to form a CRL2 E3 ubiquitin ligase and degrade the restrictive bovine A3 proteins (A3Z2Z3 and A3Z3). RNAi-mediated knockdown of ELOB or CUL2 inhibits BIV Vif-mediated degradation of these A3 proteins, whereas knockdown of CUL5 or CBF-β does not. BIV Vif with mutations in the BC box (Vif SLQ-AAA) or putative VHL box (Vif YI-AA), which cannot interact with ELOB/C or CUL2, respectively, lose the ability to counteract bovine A3 proteins. Moreover, CUL2 and UBE2M dominant-negative mutants competitively inhibit the BIV Vif-mediated degradation mechanism. Thus, although the general strategy for inhibiting A3 proteins is conserved between HIV-1/SIV and BIV, the precise mechanisms can differ substantially, with only the HIV-1/SIV Vif proteins requiring CBF-β as a cofactor, HIV-1/SIV Vif using CUL5/RBX2, and BIV Vif using CUL2/RBX1.

Concepts: HIV, Inhibitor, Ubiquitin, Ubiquitin ligase, Lentivirus, Viral infectivity factor, APOBEC3G, Simian immunodeficiency virus