Discover the most talked about and latest scientific content & concepts.

Concept: Apinae


Bumblebees (Hymenoptera: Apidae: Bombus) are well known for their important inter- and intra-specific variation in hair (or pubescence) color patterns, but the chemical nature of the pigments associated with these patterns is not fully understood. For example, though melanization is believed to provide darker colors, it still unknown which types of melanin are responsible for each color, and no conclusive data are available for the lighter colors, including white.

Concepts: Honey bee, White, Bee, Bumblebee, Hue, Apidae, Pollinators, Apinae


Time series of abundances are critical for understanding how abiotic factors and species interactions affect population dynamics, but are rarely linked with experiments and also scarce for bee pollinators. This gap is important given concerns about declines in some bee species. I monitored honey bee (Apis mellifera) and bumble bee (Bombus spp.) foragers in coastal California from 1999, when feral A. mellifera populations were low due to Varroa destructor, until 2014. Apis mellifera increased substantially, except between 2006 and 2011, coinciding with declines in managed populations. Increases in A. mellifera strongly correlated with declines in Bombus and reduced diet overlap between them, suggesting resource competition consistent with past experimental results. Lower Bombus numbers also correlated with diminished floral resources. Declines in floral abundances were associated with drought and reduced spring rainfall. These results illustrate how competition with an introduced species may interact with climate to drive local decline of native pollinators.

Concepts: Honey bee, Beekeeping, Pollinator decline, Bee, Bumblebee, Apidae, Pollinators, Apinae


Although the honeybee (Apis mellifera) is one of the world most studied insects, the chemical compounds used in nestmate recognition, remains an open question. By exploiting the error prone recognition system of the honeybee, coupled with genotyping, we studied the correlation between cuticular hydrocarbon (CHC) profile of returning foragers and acceptance or rejection behavior by guards. We revealed an average recognition error rate of 14% across 3 study colonies, that is, allowing a non-nestmate colony entry, or preventing a nestmate from entry, which is lower than reported in previous studies. By analyzing CHCs, we found that CHC profile of returning foragers correlates with acceptance or rejection by guarding bees. Although several CHC were identified as potential recognition cues, only a subset of 4 differed consistently for their relative amount between accepted and rejected individuals in the 3 studied colonies. These include a unique group of 2 positional alkene isomers (Z-8 and Z-10), which are almost exclusively produced by the bees Bombus and Apis spp, and may be candidate compounds for further study.

Concepts: Insect, European honey bee, Honey bee, Beekeeping, Bumblebee, Apidae, Guard, Apinae


Bombus terrestris is one of the most commonly used insect models to investigate visually guided behavior and spatial vision in particular. Two fundamental measures of spatial vision are spatial resolution and contrast sensitivity. In this study, we report the threshold of spatial resolution in B. terrestris and characterize the contrast sensitivity function of the bumblebee visual system for a dual choice discrimination task. We trained bumblebees in a Y-maze experimental set-up to associate a vertical sinusoidal grating with a sucrose reward, and a horizontal grating with absence of a reward. Using a logistic psychometric function, we estimated a resolution threshold of 0.21 cycles deg(-1) of visual angle. This resolution is in the same range but slightly lower than that found in honeybees (Apis mellifera and A. cerana) and another bumblebee species (B. impatiens). We also found that the contrast sensitivity of B. terrestris was 1.57 for the spatial frequency 0.090 cycles deg(-1) and 1.26 for 0.18 cycles deg(-1).

Concepts: Mathematics, Honey bee, Bumblebee, Apidae, Pollinators, Bombus terrestris, Bumblebees, Apinae


Our understanding of the role of cuticular hydrocarbons (CHC) in recognition is based largely on temperate ant species and honey bees. The stingless bees remain relatively poorly studied, despite being the largest group of eusocial bees, comprising more than 400 species in some 60 genera. The Meliponini and Apini diverged between 80-130 Myr B.P. so the evolutionary trajectories that shaped the chemical communication systems in ants, honeybees and stingless bees may be very different. The aim of this study was to study if a unique species CHC signal existed in Neotropical stingless bees, as has been shown for many temperate species, and what compounds are involved. This was achieved by collecting CHC data from 24 colonies belonging to six species of Melipona from North-Eastern Brazil and comparing the results with previously published CHC studies on Melipona. We found that each of the eleven Melipona species studied so far each produced a unique species CHC signal based around their alkene isomer production. A remarkable number of alkene isomers, up to 25 in M. asilvai, indicated the diversification of alkene positional isomers among the stingless bees. The only other group to have really diversified in alkene isomer production are the primitively eusocial Bumblebees (Bombus spp), which are the sister group of the stingless bees. Furthermore, among the eleven Neotropical Melipona species we could detect no effect of the environment on the proportion of alkane production as has been suggested for some other species.

Concepts: Honey bee, Bee, Bumblebee, Ant, Apidae, Pollinators, Stingless bee, Apinae


Apocephalus borealis phorid flies, a parasitoid of bumble bees and yellow jacket wasps in North America, was recently reported as a novel parasitoid of the honey bee Apis mellifera Linnaeus (Hymenoptera: Apidae). Little is known about the ecology of this interaction, including phorid fecundity on bee hosts, whether phorid-bee parasitism is density dependent, and which local habitat and landscape features may correlate with changes in parasitism rates for either bumble or honey bees. We examined the impact of local and landscape drivers and host abundance on phorid parasitism of A. mellifera and the bumble bee Bombus vosnesenskii Radoszkowski (Hymenoptera: Apidae). We worked in 19 urban gardens along the North-Central Coast of California, where phorid parasitism of honey bees was first reported in 2012. We collected and incubated bees for phorid emergence, and surveyed local vegetation, ground cover, and floral characteristics as well as land cover types surrounding gardens. We found that phorid parasitism was higher on bumble bees than on honey bees, and phorids produced nearly twice as many pupae on individual bumble bee hosts than on honey bee hosts. Parasitism of both bumble and honey bees increased with abundance of honey bees in a site. Differences in landscape surroundings did not correlate with parasitism, but local factors related to bee resource provisioning (e.g., tree and shrub abundance) positively correlated with increased parasitism. This research thus helps to document and describe conditions that may have facilitated phorid fly host shift to honey bees and further elucidate how resource provisioning in urban gardens influences bee-parasite interactions.

Concepts: Insect, Honey bee, Beekeeping, Bee, Bumblebee, Apidae, Pollinators, Apinae


In social insects, juvenile hormone (JH) has acquired novel functions related to caste determination and division of labor among workers, and this is best evidenced in the honey bee. In contrast to honey bees, stingless bees are a much more diverse group of highly eusocial bees, and the genus Melipona has long called special attention due to a proposed genetic mechanism of caste determination. Here, we examined methyl farnesoate epoxidase (mfe) gene expression, encoding an enzyme relevant for the final step in JH biosynthesis, and measured the hemolymph JH titers for all life cycle stages of Melipona scutellaris queens and workers. We confirmed that mfe is exclusively expressed in the corpora allata. The JH titer is high in the second larval instar, drops in the third, and rises again as the larvae enter metamorphosis. During the pupal stage, mfe expression is initialy elevated, but then gradually drops to low levels before adult emergence. No variation was, however, seen in the JH titer. In adult virgin queens, mfe expression and the JH titer are significantly elevated, possibly associated with their reproductive potential. For workers we found that JH titers are lower in foragers than in nurse bees, while mfe expression did not differ. Stingless bees are, thus, distinct from honey bee workers, suggesting that they have maintained the ancestral gonadotropic function for JH. Hence, the physiological circuitries underlying a highly eusocial life style may be variable, even within a monophyletic clade such as the corbiculate bees.

Concepts: Insect, Honey bee, Beekeeping, Bee, Apidae, Bees, Stingless bee, Apinae


Euglossine fauna of a large remnant of Brazilian Atlantic forest in eastern Brazil (Reserva Natural Vale) was assessed along an edge-forest gradient towards the interior of the fragment. To test the hypotheses that the structure of assemblages of orchid bees varies along this gradient, the following predictions were evaluated: (i) species richness is positively related to distance from the forest edge, (ii) species diversity is positively related to distance from the edge, (iii) the relative abundance of species associated with forest edge and/or open areas is inversely related to the distance from edge, and (iv) relative abundance of forest-related species is positively related to distance from the edge. A total of 2264 bees of 25 species was assessed at five distances from the edge: 0 m (the edge itself), 100 m, 500 m, 1000 m and 1500 m. Data suggested the existence of an edge-interior gradient for euglossine bees regarding species diversity and composition (considering the relative abundance of edge and forest-related species as a proxy for species composition) but not species richness.

Concepts: Biodiversity, Brazil, Apidae, Abundance, Species diversity, Species richness, Apinae, Euglossini


Euglossine bees (Apidae: Euglossini) have long been hypothesized to act as long-distance pollinators of many low-density tropical plants. We tested this hypothesis by the analysis of gene flow and genetic structure within and among populations of the euglossine bee-pollinated vine Dalechampia scandens. Using microsatellite markers, we assessed historical gene flow by the quantification of regional-scale genetic structure and isolation by distance among 18 populations, and contemporary gene flow by the estimation of recent migration rates among populations. To assess bee-mediated pollen dispersal on a smaller scale, we conducted paternity analyses within a focal population, and quantified within-population spatial genetic structure in four populations. Gene flow was limited to certain nearby populations within continuous forest blocks, whereas drift appeared to dominate on larger scales. Limited long-distance gene flow was supported by within-population patterns; gene flow was biased towards nearby plants, and significant small-scale spatial genetic structure was detected within populations. These findings suggest that, although female euglossine bees might be effective at moving pollen within populations, and perhaps within forest blocks, their contribution to gene flow on the regional scale seems too limited to counteract genetic drift in patchily distributed tropical plants. Among-population gene flow might have been reduced following habitat fragmentation.

Concepts: Scientific method, Population, Population genetics, Apidae, Pollinators, Biological dispersal, Apinae, Euglossini


Stingless bees constitute a species-rich tribe of tropical and subtropical eusocial Apidae that act as important pollinators for flowering plants. Many foraging tasks rely on vision, e.g. spatial orientation and detection of food sources and nest entrances. Meliponini workers are usually small, which sets limits on eye morphology and thus quality of vision. Limitations are expected both on acuity, and thus on the ability to detect objects from a distance, as well as on sensitivity, and thus on the foraging time window at dusk and dawn. In this study, we determined light intensity thresholds for flight under dim light conditions in eight stingless bee species in relation to body size in a Neotropical lowland rainforest. Species varied in body size (0.8-1.7 mm thorax-width), and we found a strong negative correlation with light intensity thresholds (0.1-79 lx). Further, we measured eye size, ocelli diameter, ommatidia number, and facet diameter. All parameters significantly correlated with body size. A disproportionately low light intensity threshold in the minute Trigonisca pipioli, together with a large eye parameter P eye suggests specific adaptations to circumvent the optical constraints imposed by the small body size. We discuss the implications of body size in bees on foraging behavior.

Concepts: Eye, Honey bee, Bee, Apidae, Pollinators, Apocrita, Stingless bee, Apinae