Discover the most talked about and latest scientific content & concepts.

Concept: Apicomplexa


There is much evidence that some pathogens manipulate the behaviour of their mosquito hosts to enhance pathogen transmission. However, it is unknown whether this phenomenon exists in the interaction of Anopheles gambiae sensu stricto with the malaria parasite, Plasmodium falciparum - one of the most important interactions in the context of humanity, with malaria causing over 200 million human cases and over 770 thousand deaths each year. Here we demonstrate, for the first time, that infection with P. falciparum causes alterations in behavioural responses to host-derived olfactory stimuli in host-seeking female An. gambiae s.s. mosquitoes. In behavioural experiments we showed that P. falciparum-infected An. gambiae mosquitoes were significantly more attracted to human odors than uninfected mosquitoes. Both P. falciparum-infected and uninfected mosquitoes landed significantly more on a substrate emanating human skin odor compared to a clean substrate. However, significantly more infected mosquitoes landed and probed on a substrate emanating human skin odor than uninfected mosquitoes. This is the first demonstration of a change of An. gambiae behaviour in response to olfactory stimuli caused by infection with P. falciparum. The results of our study provide vital information that could be used to provide better predictions of how malaria is transmitted from human being to human being by An. gambiae s.s. females. Additionally, it highlights the urgent need to investigate this interaction further to determine the olfactory mechanisms that underlie the differential behavioural responses. In doing so, new attractive compounds could be identified which could be used to develop improved mosquito traps for surveillance or trapping programmes that may even specifically target P. falciparum-infected An. gambiae s.s. females.

Concepts: Immune system, Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Apicomplexa, Mosquito


During acute infection in human and animal hosts, the obligate intracellular protozoan Toxoplasma gondii infects a variety of cell types, including leukocytes. Poised to respond to invading pathogens, dendritic cells (DC) may also be exploited by T. gondii for spread in the infected host. Here, we report that human and mouse myeloid DC possess functional γ-aminobutyric acid (GABA) receptors and the machinery for GABA biosynthesis and secretion. Shortly after T. gondii infection (genotypes I, II and III), DC responded with enhanced GABA secretion in vitro. We demonstrate that GABA activates GABA(A) receptor-mediated currents in T. gondii-infected DC, which exhibit a hypermigratory phenotype. Inhibition of GABA synthesis, transportation or GABA(A) receptor blockade in T. gondii-infected DC resulted in impaired transmigration capacity, motility and chemotactic response to CCL19 in vitro. Moreover, exogenous GABA or supernatant from infected DC restored the migration of infected DC in vitro. In a mouse model of toxoplasmosis, adoptive transfer of infected DC pre-treated with GABAergic inhibitors reduced parasite dissemination and parasite loads in target organs, e.g. the central nervous system. Altogether, we provide evidence that GABAergic signaling modulates the migratory properties of DC and that T. gondii likely makes use of this pathway for dissemination. The findings unveil that GABA, the principal inhibitory neurotransmitter in the brain, has activation functions in the immune system that may be hijacked by intracellular pathogens.

Concepts: Immune system, Nervous system, Bacteria, Apicomplexa, Rat, Toxoplasmosis, Toxoplasma gondii, Coccidia


The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo and threatens the prospect of malaria elimination. However, little is known about the emergence of P. knowlesi, particularly in Sabah. We reviewed Sabah Department of Health records to investigate the trend of each malaria species over time.

Concepts: Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Apicomplexa, Malaysia, Plasmodium knowlesi


In areas of low malaria transmission, it is currently recommended that a single dose of primaquine (0.75 mg base/kg; 45 mg adult dose) be added to artemisinin combination treatment (ACT) in acute falciparum malaria to block malaria transmission. Review of studies of transmission-blocking activity based on the infectivity of patients or volunteers to anopheline mosquitoes, and of haemolytic toxicity in glucose 6-dehydrogenase (G6PD) deficient subjects, suggests that a lower primaquine dose (0.25 mg base/kg) would be safer and equally effective. This lower dose could be deployed together with ACTs without G6PD testing wherever use of a specific gametocytocide is indicated.

Concepts: Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Apicomplexa, Glucose-6-phosphate dehydrogenase deficiency, Artemisinin


BACKGROUND: Indonesia has set 2030 as its deadline for elimination of malaria transmission in the archipelago, with regional deadlines established according to present levels of malaria endemicity and strength of health infrastructure. The Municipality of Sabang which historically had one of the highest levels of malaria in Aceh province aims to achieve elimination by the end of 2013. METHOD: From 2008 to 2010, baseline surveys of malaria interventions, mapping of all confirmed malaria cases, categorization of residual foci of malaria transmission and vector surveys were conducted in Sabang, Aceh, a pilot district for malaria elimination in Indonesia. To inform future elimination efforts, mass screening from the focal areas to measure prevalence of malaria with both microscopy and PCR was conducted. G6PD deficiency prevalence was also measured.Result: Despite its small size, a diverse mixture of potential malaria vectors were documented in Sabang, including Anopheles sundaicus, Anopheles minimus, Anopheles aconitus and Anopheles dirus. Over a two-year span, the number of sub-villages with ongoing malaria transmission reduced from 61 to 43. Coverage of malaria diagnosis and treatment, IRS, and LLINs was over 80%. Screening of 16,229 residents detected 19 positive people, for a point prevalence of 0.12%. Of the 19 positive cases, three symptomatic infections and five asymptomatic infections were detected with microscopy and 11 asymptomatic infections were detected with PCR. Of the 19 cases, seven were infected with Plasmodium falciparum, 11 were infected with Plasmodium vivax, and one subject was infected with both species. Analysis of the 937 blood samples for G6PD deficiency revealed two subjects (0.2%) with deficient G6PD. DISCUSSION: The interventions carried out by the government of Sabang have dramatically reduced the burden of malaria over the past seven years. The first phase, carried out between 2005 and 2007, included improved malaria diagnosis, introduction of ACT for treatment, and scale-up of coverage of IRS and LLINs. The second phase, from 2008 to 2010, was initiated to eliminate the persist residual transmission of malaria, consisted of development of a malaria database to ensure rapid case reporting and investigation, stratification of malaria foci to guide interventions, and active case detection to hunt symptomatic and asymptomatic malaria carriers.

Concepts: Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Apicomplexa, Glucose-6-phosphate dehydrogenase deficiency, Aceh


BACKGROUND: Although tick-borne diseases are important causes of morbidity and mortality in dogs in tropical areas, there is little information on the agents causing these infections in the Caribbean. METHODOLOGY: We used PCRs to test blood from a cross-section of dogs on St Kitts for Ehrlichia (E.) canis, Babesia (B.) spp., Anaplasma (A.) spp. and Hepatozoon (H.) spp. Antibodies against E. canis and A. phagocytophilum/platys were detected using commercial immunochromatography tests. Records of the dogs were examined retrospectively to obtain clinical and laboratory data. PRINCIPAL FINDINGS: There was serological and/or PCR evidence of infections of dogs with E. canis (27%; 46/170), Babesia spp. (24%; 90/372) including B. canis vogeli (12%; 43/372) and B. gibsoni (10%; 36/372), A. platys (11%; 17/157) and H. canis (6%; 15/266). We could not identify the Babesia sp. detected in nine dogs. There was evidence of multiple infections with dual infections with E. canis and B. canis vogeli (8%; 14/179) or B. gibsoni (7%; 11/170) being the most common. There was agreement between immunochromatography and PCR test results for E. canis for 87% of dogs. Only 13% of exposed dogs had signs of a tick-borne disease and 38% had laboratory abnormalities. All 10 dogs presenting for a recheck after treatment of E. canis with doxycycline were apparently healthy although all remained seropositive and six still had laboratory abnormalities despite an average of two treatments with the most recent being around 12 months previously. Infections with Babesia spp. were also mainly subclinical with only 6% (4/67) showing clinical signs and 13% (9/67) having laboratory abnormalities. Similarly, animals with evidence of infections with A. platys and H. canis were largely apparently healthy with only occasional laboratory abnormalities. CONCLUSIONS: Dogs are commonly infected with tick-borne pathogens in the Caribbean with most having no clinical signs or laboratory abnormalities.

Concepts: Apicomplexa, Lyme disease, Tick, Caribbean, Ehrlichiosis, Saint Kitts and Nevis, Saint Kitts, Anguilla


BACKGROUND: Mitochondrial (mt) genomes vary considerably in size, structure and gene content. The mt genomes of the phylum Apicomplexa, which includes important human pathogens such as the malaria parasite Plasmodium, also show marked diversity of structure. Plasmodium has a concatenated linear mt genome of the smallest size (6-kb); Babesia and Theileria have a linear monomeric mt genome (6.5-kb to 8.2-kb) with terminal inverted repeats; Eimeria, which is distantly related to Plasmodium and Babesia/Theileria, possesses a mt genome (6.2-kb) with a concatemeric form similar to that of Plasmodium; Cryptosporidium, the earliest branching lineage within the phylum Apicomplexa, has no mt genome. We are interested in the evolutionary origin of linear mt genomes of Babesia/Theileria, and have investigated mt genome structures in members of archaeopiroplasmid, a lineage branched off earlier from Babesia/Theileria. RESULTS: The complete mt genomes of archaepiroplasmid parasites, Babesia microti and Babesia rodhaini, were sequenced. The mt genomes of B. microti (11.1-kb) and B. rodhaini (6.9-kb) possess two pairs of unique inverted repeats, IR-A and IR-B. Flip-flop inversions between two IR-As and between two IR-Bs appear to generate four distinct genome structures that are present at an equi-molar ratio. An individual parasite contained multiple mt genome structures, with 20 copies and 2 - 3 copies per haploid nuclear genome in B. microti and B. rodhaini, respectively. CONCLUSION: We found a novel linear monomeric mt genome structure of B. microti and B. rhodhaini equipped with dual flip-flop inversion system, by which four distinct genome structures are readily generated. To our knowledge, this study is the first to report the presence of two pairs of distinct IR sequences within a monomeric linear mt genome. The present finding provides insight into further understanding of evolution of mt genome structure.

Concepts: DNA, Bacteria, Genome, Malaria, Plasmodium, Apicomplexa, Babesia, Theileria


Toxoplasmic retinochoroiditis is a common blinding retinal infection caused by the parasite, Toxoplasma gondii. Basic processes relating to establishment of infection in the human eye by T. gondii tachyzoites have not been investigated. To evaluate the ability of tachyzoites to navigate the human retina, we developed an ex vivo assay, in which a suspension containing 1.5×10(7) parasites replaced vitreous in a posterior eyecup. After 8 hours, the retina was formalin-fixed and paraffin-embedded, and sections were immunostained to identify tachyzoites. To determine the preference of tachyzoites for human retinal neuronal versus glial populations, we infected dissociated retinal cultures, subsequently characterized by neuron-specific enolase or glial fibrillary acidic protein expression, and retinal cell lines, with YFP-expressing tachyzoites. In migration assays, retinas contained 110-250 live tachyzoites; 64.5-95.2% (mean  = 79.6%) were localized to the nerve fiber layer, but some were detected in the outer retina. Epifluorescence imaging of dissociated retinal cultures 24 hours after infection indicated preferential infection of glia. This observation was confirmed in growth assays, with significantly higher (p≤0.005) numbers of tachyzoites measured in glial verus neuronal cell lines. Our translational studies indicate that, after entering retina, tachyzoites may navigate multiple tissue layers. Tachyzoites preferentially infect glial cells, which exist throughout the retina. These properties may contribute to the success of T. gondii as a human pathogen.

Concepts: Neuron, Apicomplexa, Retina, Eye, Myelin, Glial cell, Toxoplasmosis, Toxoplasma gondii


BACKGROUND: Toxoplasma gondii infections during pregnancy can result in abortion or congenital defects. Prevalence and risk factors of toxoplasmosis in women of child-bearing age in Ethiopia are unknown. The current study was conducted with the objectives of estimating the seroprevalence and potential risk factors in acquiring T. gondii infection by women of child-bearing age in Central Ethiopia. METHODS: A cross-sectional study was conducted from March 2011 to September 2011. Sera of 425 women were analyzed by indirect enzyme linked immunosorbent assay (ELISA). A questionnaire survey was administered for all study participants to gather information on risk factors. RESULTS: The study revealed that anti- T. gondii IgG antibodies were detected in 81.4% of the samples of which 78.4% were positive for only IgG and 3.06% positive for both IgG and IgM antibodies. Seroprevalence of IgM antibodies to T. gondii (4.0%, 95% CI: 2.14, 5.86) was suggestive of recent infections. Of the 213 pregnant women 9 (4.2 %) were IgM reactive. Out of 17 potential risk factors investigated, univariate logistic regression showed significant association of T. gondii infection with study area, age, pregnancy status, raw vegetable consumption, source of water, presence of cats at home, contact with cats, HIV status and precaution during cats' feces cleaning (P <= 0.05). The final logistic regression model revealed that: the probability of acquiring T. gondii infection by women of Debre-Zeit was 4.46 times (95% CI of adjusted odds ratio [aOR]: 1.67, 11.89; P =0.003) higher compared to women of Ambo, pregnant women were twice (95% CI aOR: 1.13, 3.59; P = 0.018) more likely to be seropositive than non-pregnant women and women who consume raw vegetable were at increased risk of infection (aOR = 2.21, 95% CI: 1.03, 4.78; P = 0.043) than women who didn't consume. CONCLUSION: The seroprevalence of T. gondii infection in women of child-bearing age in Central Ethiopia is high. Study area, pregnancy and raw vegetable consumption are risk factors to acquire T. gondii infection. Educational program, antenatal screening of pregnant women and further epidemiological studies to uncover the economic and health impact of toxoplasmosis are suggested.

Concepts: Immune system, Pregnancy, Epidemiology, Apicomplexa, Immunology, ELISA, Toxoplasmosis, Toxoplasma gondii


Coccidiosis, caused by species of the apicomplexan parasite Eimeria, is a major disease of chickens. Eimeria species are present world-wide, and are ubiquitous under intensive farming methods. However, prevalence of Eimeria species is not uniform across production systems. In developing countries such as Ethiopia, a high proportion of chicken production occurs on rural smallholdings (i.e. ‘village chicken production’) where infectious diseases constrain productivity and surveillance is low. Coccidiosis is reported to be prevalent in these areas. However, a reliance on oocyst morphology to determine the infecting species may impede accurate diagnosis. Here, we used cross-sectional and longitudinal studies to investigate the prevalence of Eimeria oocyst shedding at two rural sites in the Ethiopian highlands.

Concepts: Epidemiology, Disease, Infectious disease, Agriculture, Infection, Ethiopia, Apicomplexa, Chicken