SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Aphthovirus

146

Vesicular stomatitis (VS) is endemic in Central America and northern regions of South America, where sporadic outbreaks in cattle and pigs can cause clinical signs that are similar to foot-and-mouth disease (FMD). There is therefore a pressing need for rapid, sensitive and specific differential diagnostic assays that are suitable for decision making in the field. RT-LAMP assays have been developed for vesicular diseases such as FMD and swine vesicular disease (SVD) but there is currently no RT-LAMP assay that can detect VS virus (VSV), nor are there any multiplex RT-LAMP assays which permit rapid discrimination between these ‘look-a-like’ diseases in situ. This study describes the development of a novel RT-LAMP assay for the detection of VSV focusing on the New Jersey (VSNJ) serotype, which has caused most of the recent VS cases in the Americas. This RT-LAMP assay was combined in a multiplex format combining molecular lateral-flow devices for the discrimination between FMD and VS. This assay was able to detect representative VSNJV and the limit of detection of the singleplex and multiplex VSNJV RT-LAMP assays were equivalent to laboratory based real-time RT-PCR assays. A similar multiplex RT-LAMP assay was developed to discriminate between FMDV and SVDV, showing that FMDV, SVDV and VSNJV could be reliably detected within epithelial suspensions without the need for prior RNA extraction, providing an approach that could be used as the basis for a rapid and low cost assay for differentiation of FMD from other vesicular diseases in the field.

Concepts: Assay, Aphthovirus, Foot-and-mouth disease, Laboratory techniques, South America, Animal virology, Americas, Swine vesicular disease

28

We designed a series of epitope proteins containing the G-H loops of three topotypes of foot-and-mouth disease virus (FMDV) serotype O and promiscuous artificial Th sites and selected one epitope protein (designated as B4) with optimal immunogenicity and cross-reactivity. Three out of five pigs immunized intramuscularly with this B4 were protected against virulent FMDV challenge after a single inoculation, while all pigs co-immunized with B4 and polyinosinic-cytidylic acid [poly (I: C)] conferred complete protection following FMDV challenge. Additionally, we demonstrated that all pigs co-immunized with B4 and poly (I: C) elicited FMDV-specific neutralizing antibodies, total IgG antibodies, typeIinterferon (IFN-α/β) and cytokines IFN-γ. In contrast, some pigs immunized with B4 alone produced parameters mentioned above, while some not, suggesting that poly (I: C) reduced animal-to-animal variations in both cellular and humoral responses often observed in association with epitope-based vaccines and up-regulated T-cell immunity often poorly observed in protein-based vaccines. We propose that poly (I: C) is an effective adjuvant for this epitope-based vaccine of FMDV. This combination could yield an effective and safe candidate vaccine for the control and eradication of FMD in pigs.

Concepts: Immune system, Antibody, Protein, Vaccination, Immunology, Smallpox, Aphthovirus, Foot-and-mouth disease

25

Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.

Concepts: Immune system, Protein, Microbiology, Virus, Vaccine, Vaccination, Aphthovirus, Foot-and-mouth disease

12

Foot-and-mouth disease virus (FMDV) is a significant economically and distributed globally pathogen of Artiodactyla. Current vaccines are chemically inactivated whole virus particles that require large-scale virus growth in strict bio-containment with the associated risks of accidental release or incomplete inactivation. Non-infectious empty capsids are structural mimics of authentic particles with no associated risk and constitute an alternate vaccine candidate. Capsids self-assemble from the processed virus structural proteins, VP0, VP3 and VP1, which are released from the structural protein precursor P1-2A by the action of the virus-encoded 3C protease. To date recombinant empty capsid assembly has been limited by poor expression levels, restricting the development of empty capsids as a viable vaccine. Here expression of the FMDV structural protein precursor P1-2A in insect cells is shown to be efficient but linkage of the cognate 3C protease to the C-terminus reduces expression significantly. Inactivation of the 3C enzyme in a P1-2A-3C cassette allows expression and intermediate levels of 3C activity resulted in efficient processing of the P1-2A precursor into the structural proteins which assembled into empty capsids. Expression was independent of the insect host cell background and leads to capsids that are recognised as authentic by a range of anti-FMDV bovine sera suggesting their feasibility as an alternate vaccine.

Concepts: DNA, Proteins, Protein, Gene, Enzyme, Aphthovirus, Foot-and-mouth disease, Foot-and-mouth disease virus

8

Picornaviruses are a leading cause of human and veterinary infections that result in various diseases, including polio and the common cold. As archetypical non-enveloped viruses, their biology has been extensively studied. Although a range of different cell-surface receptors are bound by different picornaviruses, it is unclear whether common host factors are needed for them to reach the cytoplasm. Using genome-wide haploid genetic screens, here we identify the lipid-modifying enzyme PLA2G16 (refs 8, 9, 10, 11) as a picornavirus host factor that is required for a previously unknown event in the viral life cycle. We find that PLA2G16 functions early during infection, enabling virion-mediated genome delivery into the cytoplasm, but not in any virion-assigned step, such as cell binding, endosomal trafficking or pore formation. To resolve this paradox, we screened for suppressors of the ΔPLA2G16 phenotype and identified a mechanism previously implicated in the clearance of intracellular bacteria. The sensor of this mechanism, galectin-8 (encoded by LGALS8), detects permeated endosomes and marks them for autophagic degradation, whereas PLA2G16 facilitates viral genome translocation and prevents clearance. This study uncovers two competing processes triggered by virus entry: activation of a pore-activated clearance pathway and recruitment of a phospholipase to enable genome release.

Concepts: Protein, Gene, Genetics, Cell, Bacteria, Virus, Aphthovirus, Common cold

5

Picornaviruses are non-enveloped RNA viruses that enter cells via receptor-mediated endocytosis. Because they lack an envelope, picornaviruses face the challenge of delivering their RNA genomes across the membrane of the endocytic vesicle into the cytoplasm to initiate infection. Currently, the mechanism of genome release and translocation across membranes remains poorly understood. Within the enterovirus genus, poliovirus, rhinovirus 2, and rhinovirus 16 have been proposed to release their genomes across intact endosomal membranes through virally induced pores, whereas one study has proposed that rhinovirus 14 releases its RNA following disruption of endosomal membranes. For the more distantly related aphthovirus genus (e.g. foot-and-mouth disease viruses and equine rhinitis A virus) acidification of endosomes results in the disassembly of the virion into pentamers and in the release of the viral RNA into the lumen of the endosome, but no details have been elucidated as how the RNA crosses the vesicle membrane. However, more recent studies suggest aphthovirus RNA is released from intact particles and the dissociation to pentamers may be a late event. In this study we have investigated the RNase A sensitivity of genome translocation of poliovirus using a receptor-decorated-liposome model and the sensitivity of infection of poliovirus and equine-rhinitis A virus to co-internalized RNase A. We show that poliovirus genome translocation is insensitive to RNase A and results in little or no release into the medium in the liposome model. We also show that infectivity is not reduced by co-internalized RNase A for poliovirus and equine rhinitis A virus. Additionally, we show that all poliovirus genomes that are internalized into cells, not just those resulting in infection, are protected from RNase A. These results support a finely coordinated, directional model of viral RNA delivery that involves viral proteins and cellular membranes.

Concepts: DNA, Gene, Genetics, Virus, Genome, RNA, Cell membrane, Aphthovirus

5

Foot-and-mouth disease virus (FMDV) is an economically devastating viral disease leading to a substantial loss to the swine industry worldwide. A novel alternative strategy is to develop pigs that are genetically resistant to infection. Here, we produce transgenic (TG) pigs that constitutively expressed FMDV-specific siRNA derived from small hairpin RNA (shRNA). In vitro challenge of TG fibroblasts showed the shRNA suppressed viral growth. TG and non-transgenic (Non-TG) pigs were challenged by intramuscular injection with 100 LD50 of FMDV. High fever, severe clinical sign of FMD and typical histopathological changes were observed in all of the Non-TG pigs but in none of the high-siRNA pigs. Our results show that transgenic shRNA can provide a viable tool for producing animals with enhanced resistance to FMDV.

Concepts: Fever, Aphthovirus, Foot-and-mouth disease, Foot-and-mouth disease virus

4

Antibodies were prepared by immunizing mice with empty, immature particles of human enterovirus 71 (EV71), a picornavirus that causes severe neurological disease in young children. The capsid structure of these empty particles is different from that of the mature virus and is similar to “A” particles encountered when picornaviruses recognize a potential host cell before genome release. The monoclonal antibody E18, generated by this immunization, induced a conformational change when incubated at temperatures between 4 °C and 37 °C with mature virus, transforming infectious virions into A particles. The resultant loss of genome that was observed by cryo-EM and a fluorescent SYBR Green dye assay inactivated the virus, establishing the mechanism by which the virus is inactivated and demonstrating that the E18 antibody has potential as an anti-EV71 therapy. The antibody-mediated virus neutralization by the induction of genome release has not been previously demonstrated. Furthermore, the present results indicate that antibodies with genome-release activity could also be produced for other picornaviruses by immunization with immature particles.

Concepts: Immune system, Antibody, Protein, Gene, Enterovirus, Bacteria, Aphthovirus, Picornavirus

2

Foot-and-mouth disease (FMD) is a highly infectious enzootic disease caused by FMD virus. The complete genome sequence of a circulatory FMD virus (FMDV) serotype O isolated from Natore, Bangladesh, is reported here. Genomic analysis revealed antigenic heterogeneity within the VP1 region, a fragment deletion, and insertions at the 5' untranslated region (UTR) and 3A region compared to the genome of the available vaccine strain.

Concepts: DNA, Genetics, Virus, Genome, RNA, Aphthovirus, Foot-and-mouth disease, Foot-and-mouth disease virus

2

: Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals including cattle, pigs, sheep and many wildlife species. It can cause enormous economic losses when incursions occur into countries which are normally disease free. In addition, it has long-term effects within countries where the disease is endemic due to reduced animal productivity and the restrictions on international trade in animal products. The disease is caused by infection with foot-and-mouth disease virus (FMDV), a picornavirus. Seven different serotypes (and numerous variants) of FMDV have been identified. Some serotypes have a restricted geographical distribution, e.g. Asia-1, whereas others, notably serotype O, occur in many different regions. There is no cross-protection between serotypes and sometimes protection conferred by vaccines even of the same serotype can be limited. Thus it is important to characterize the viruses that are circulating if vaccination is being used for disease control. This review describes current methods for the detection and characterization of FMDVs. Sequence information is increasingly being used for identifying the source of outbreaks. In addition such information can be used to understand antigenic change within virus strains. The challenges and opportunities for improving the control of the disease within endemic settings, with a focus on Eurasia, are discussed, including the role of the FAO/EuFMD/OIE Progressive Control Pathway. Better control of the disease in endemic areas reduces the risk of incursions into disease-free regions.

Concepts: Infectious disease, Aphthovirus, Foot-and-mouth disease, Foot-and-mouth disease virus, Animal virology, Viral diseases, Picornaviruses, Domestic sheep