SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Antiviral drug

68

Broadly neutralizing antibodies targeting a highly conserved region in the hemagglutinin (HA) stem protect against influenza infection. Here, we investigate the protective efficacy of a protein (HB36.6) computationally designed to bind with high affinity to the same region in the HA stem. We show that intranasal delivery of HB36.6 affords protection in mice lethally challenged with diverse strains of influenza independent of Fc-mediated effector functions or a host antiviral immune response. This designed protein prevents infection when given as a single dose of 6.0 mg/kg up to 48 hours before viral challenge and significantly reduces disease when administered as a daily therapeutic after challenge. A single dose of 10.0 mg/kg HB36.6 administered 1-day post-challenge resulted in substantially better protection than 10 doses of oseltamivir administered twice daily for 5 days. Thus, binding of HB36.6 to the influenza HA stem region alone, independent of a host response, is sufficient to reduce viral infection and replication in vivo. These studies demonstrate the potential of computationally designed binding proteins as a new class of antivirals for influenza.

Concepts: Immune system, Antibody, Infectious disease, Virus, Infection, Antiviral drug, Influenza, Protection

37

37

More than 130 million people worldwide chronically infected with hepatitis C virus (HCV) are at risk of developing severe liver disease. Antiviral treatments are only partially effective against HCV infection, and a vaccine is not available. Development of more efficient therapies has been hampered by the lack of a small animal model. Building on the observation that CD81 and occludin (OCLN) comprise the minimal set of human factors required to render mouse cells permissive to HCV entry, we previously showed that transient expression of these two human genes is sufficient to allow viral uptake into fully immunocompetent inbred mice. Here we demonstrate that transgenic mice stably expressing human CD81 and OCLN also support HCV entry, but innate and adaptive immune responses restrict HCV infection in vivo. Blunting antiviral immunity in genetically humanized mice infected with HCV results in measurable viraemia over several weeks. In mice lacking the essential cellular co-factor cyclophilin A (CypA), HCV RNA replication is markedly diminished, providing genetic evidence that this process is faithfully recapitulated. Using a cell-based fluorescent reporter activated by the NS3-4A protease we visualize HCV infection in single hepatocytes in vivo. Persistently infected mice produce de novo infectious particles, which can be inhibited with directly acting antiviral drug treatment, thereby providing evidence for the completion of the entire HCV life cycle in inbred mice. This genetically humanized mouse model opens new opportunities to dissect genetically HCV infection in vivo and provides an important preclinical platform for testing and prioritizing drug candidates and may also have utility for evaluating vaccine efficacy.

Concepts: Immune system, Gene, Genetics, Gene expression, Virus, Antiviral drug, Hepatitis C, Hepatitis C virus

37

Influenza antiviral agents play important roles in modulating disease severity and in controlling pandemics while vaccines are prepared, but the development of resistance to agents like the commonly used neuraminidase inhibitor oseltamivir may limit their future utility. We report here a new class of specific, mechanism-based anti-influenza drugs that function via the formation of a stabilized covalent intermediate in the influenza neuraminidase enzyme, and confirm this mode of action via structural and mechanistic studies. These compounds function in cell-based assays and in animal models, with efficacies comparable to that of the neuraminidase inhibitor zanamivir and with broad spectrum activity against drug-resistant strains in vitro. The similarity of their structure to that of the natural substrate and their mechanism-based design make these attractive antiviral candidates.

Concepts: Enzyme, Antiviral drug, Influenza, Oseltamivir, Neuraminidase, Viral neuraminidase, Zanamivir, Neuraminidase inhibitor

34

Availability of directly-acting antivirals (DAAs) has changed the treatment landscape of hepatitis C virus (HCV) infection. The high price of DAAs has restricted their use in several countries. However, in some countries such as India, generic DAAs are available at much cheaper price. This study examined whether generic DAAs could be cost-saving and how long it would take for the treatment to become cost-saving/effective.

Concepts: Virus, Hepatitis, Antiviral drug, Hepatitis C, Hepatitis B, Hepatitis A, Hepatitis C virus, Availability

31

ABSTRACT OBJECTIVE: To review evidence published since the 2001 American Academy of Neurology (AAN) practice parameter regarding the effectiveness, safety, and tolerability of steroids and antiviral agents for Bell palsy. METHODS: We searched Medline and the Cochrane Database of Controlled Clinical Trials for studies published since January 2000 that compared facial functional outcomes in patients with Bell palsy receiving steroids/antivirals with patients not receiving these medications. We graded each study (Class I-IV) using the AAN therapeutic classification of evidence scheme. We compared the proportion of patients recovering facial function in the treated group with the proportion of patients recovering facial function in the control group. RESULTS: Nine studies published since June 2000 on patients with Bell palsy receiving steroids/antiviral agents were identified. Two of these studies were rated Class I because of high methodologic quality. CONCLUSIONS AND RECOMMENDATIONS: For patients with new-onset Bell palsy, steroids are highly likely to be effective and should be offered to increase the probability of recovery of facial nerve function (2 Class I studies, Level A) (risk difference 12.8%-15%). For patients with new-onset Bell palsy, antiviral agents in combination with steroids do not increase the probability of facial functional recovery by >7%. Because of the possibility of a modest increase in recovery, patients might be offered antivirals (in addition to steroids) (Level C). Patients offered antivirals should be counseled that a benefit from antivirals has not been established, and, if there is a benefit, it is likely that it is modest at best.

Concepts: Clinical trial, Virus, Evidence-based medicine, Cochrane Library, Antiviral drug, Antivirals, Facial nerve, Bell's palsy

30

Background Patients who are chronically infected with hepatitis C virus (HCV) and who do not have a sustained virologic response after treatment with regimens containing direct-acting antiviral agents (DAAs) have limited retreatment options. Methods We conducted two phase 3 trials involving patients who had been previously treated with a DAA-containing regimen. In POLARIS-1, patients with HCV genotype 1 infection who had previously received a regimen containing an NS5A inhibitor were randomly assigned in a 1:1 ratio to receive either the nucleotide polymerase inhibitor sofosbuvir, the NS5A inhibitor velpatasvir, and the protease inhibitor voxilaprevir (150 patients) or matching placebo (150 patients) once daily for 12 weeks. Patients who were infected with HCV of other genotypes (114 patients) were enrolled in the sofosbuvir-velpatasvir-voxilaprevir group. In POLARIS-4, patients with HCV genotype 1, 2, or 3 infection who had previously received a DAA regimen but not an NS5A inhibitor were randomly assigned in a 1:1 ratio to receive sofosbuvir-velpatasvir-voxilaprevir (163 patients) or sofosbuvir-velpatasvir (151 patients) for 12 weeks. An additional 19 patients with HCV genotype 4 infection were enrolled in the sofosbuvir-velpatasvir-voxilaprevir group. Results In the three active-treatment groups, 46% of the patients had compensated cirrhosis. In POLARIS-1, the rate of sustained virologic response was 96% with sofosbuvir-velpatasvir-voxilaprevir, as compared with 0% with placebo. In POLARIS-4, the rate of response was 98% with sofosbuvir-velpatasvir-voxilaprevir and 90% with sofosbuvir-velpatasvir. The most common adverse events were headache, fatigue, diarrhea, and nausea. In the active-treatment groups in both trials, the percentage of patients who discontinued treatment owing to adverse events was 1% or lower. Conclusions Sofosbuvir-velpatasvir-voxilaprevir taken for 12 weeks provided high rates of sustained virologic response among patients across HCV genotypes in whom treatment with a DAA regimen had previously failed. (Funded by Gilead Sciences; POLARIS-1 and POLARIS-4 ClinicalTrials.gov numbers, NCT02607735 and NCT02639247 .).

Concepts: DNA, Clinical trial, Evolution, Virus, Antiviral drug, Hepatitis C, Protease, Hepatitis C virus

29

Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV.

Concepts: DNA, Protein, Gene, Amino acid, Virus, RNA, Antiviral drug, Hepatitis B

29

Highly pathogenic avian influenza A/H5N1 virus can cause morbidity and mortality in humans but thus far has not acquired the ability to be transmitted by aerosol or respiratory droplet (“airborne transmission”) between humans. To address the concern that the virus could acquire this ability under natural conditions, we genetically modified A/H5N1 virus by site-directed mutagenesis and subsequent serial passage in ferrets. The genetically modified A/H5N1 virus acquired mutations during passage in ferrets, ultimately becoming airborne transmissible in ferrets. None of the recipient ferrets died after airborne infection with the mutant A/H5N1 viruses. Four amino acid substitutions in the host receptor-binding protein hemagglutinin, and one in the polymerase complex protein basic polymerase 2, were consistently present in airborne-transmitted viruses. The transmissible viruses were sensitive to the antiviral drug oseltamivir and reacted well with antisera raised against H5 influenza vaccine strains. Thus, avian A/H5N1 influenza viruses can acquire the capacity for airborne transmission between mammals without recombination in an intermediate host and therefore constitute a risk for human pandemic influenza.

Concepts: DNA, Bacteria, Virus, Antiviral drug, Influenza, Avian influenza, Influenza pandemic, Influenza vaccine

28

Budding of filoviruses, arenaviruses, and rhabdoviruses is facilitated by subversion of host proteins, such as Nedd4 E3 ubiquitin ligase, by viral PPxY late (L) budding domains expressed within the matrix proteins of these RNA viruses. As L domains are important for budding and are highly conserved in a wide array of RNA viruses, they represent potential broad-spectrum targets for the development of antiviral drugs. To identify potential competitive blockers, we used the known Nedd4 WW-domain/PPxY interaction interface as the basis of an in silico screen. Using PPxY-dependent budding of Marburg (MARV) VP40 virus-like particles (VLPs) as our model system, we identified small molecule hit 1: that inhibited Nedd4-PPxY interaction and PPxY-dependent budding. This lead candidate was subsequently improved with additional structure-activity relationship (SAR) analog testing which enhanced anti-budding activity into the nanomolar range. Current leads 4: and 5: exhibit on-target effects by specifically blocking the MARV VP40 PPxY-host Nedd4 interaction and subsequent PPxY-dependent egress of MARV VP40 VLPs. In addition, leads 4: and 5: exhibited anti-budding activity against Ebola and Lassa fever VLPs, as well as vesicular stomatitis (VSV) and rabies (RABV) viruses. These data provide target validation and suggest that inhibition of the PPxY-Nedd4 interaction can serve as the basis for the development of a novel class of broad-spectrum, host-oriented antivirals targeting viruses that depend on a functional PPxY L domain for efficient egress.

Concepts: Protein, Microbiology, Virus, Genome, RNA, Antiviral drug, Influenza, Mononegavirales