SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Antiviral drug

171

Enterovirus 71 (EV71) is an important human pathogen which may cause severe neurological complications and death in children. The virus caused several outbreaks in the Asia-Pacific region during the past two decades and has been considered a significant public health problem in the post-poliovirus eradication era. Unlike poliovirus, there is no effective vaccine or approved antivirals against EV71. To explore anti-EV71 agents therefore is of vital importance. Several strategies have been employed to develop antivirals based on the molecular characteristics of the virus. Among these, some small molecules that were developed against human rhinoviruses and poliovirus are under evaluation. In this review, we discuss the recent development of such small molecules against EV71, known drug resistance and possible solutions to it, and animal models for evaluating the efficacy of these antivirals. Although further investigation is required for clinical applications of the existing candidates, the molecular mechanisms revealed for the inhibition of EV71 replication can be used for designing new molecules against this virus in the future.

Concepts: Immune system, Public health, Enterovirus, Malaria, Vaccination, Future, Antiviral drug, Asia-Pacific

170

Acute respiratory infections are a major cause of morbidity in children both in developed and developing countries. A wide range of respiratory viruses, including respiratory syncytial virus (RSV), influenza A and B viruses, parainfluenza viruses (PIVs), adenovirus, rhinovirus (HRV), have repeatedly been detected in acute lower respiratory tract infections (LRTI) in children in the past decades. However, in the last ten years thanks to progress in molecular technologies, newly discovered viruses have been identified including human Metapneumovirus (hMPV), coronaviruses NL63 (HcoV-NL63) and HKU1 (HcoV-HKU1), human Bocavirus (HBoV), new enterovirus (HEV), parechovirus (HpeV) and rhinovirus (HRV) strains, polyomaviruses WU (WUPyV) and KI (KIPyV) and the pandemic H1N1v influenza A virus. These discoveries have heavily modified previous knowledge on respiratory infections mainly highlighting that pediatric population is exposed to a variety of viruses with similar seasonal patterns. In this context establishing a causal link between a newly identified virus and the disease as well as an association between mixed infections and an increase in disease severity can be challenging. This review will present an overview of newly recognized as well as the main emerging respiratory viruses and seek to focus on the their contribution to infection and co-infection in LRTIs in childhood.

Concepts: Microbiology, Virus, Infection, Antiviral drug, Influenza, Influenza pandemic, Respiratory system, Human respiratory syncytial virus

169

BACKGROUND: Hepatitis B virus (HBV), because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. RESULTS: Among the core, preS, and basic core promoter (BCP) deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95%CI = 1.296 ~ 35.817, P = 0.023). In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007). Particularly, preS2 deletions were associated with the usage of nucleos(t)ide analog therapy (Fisher exact test, P = 0.023). Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that preS2 deletions alone were not responsible for antiviral resistance, implying the coordination between wild type and mutant strains during viral survival and disease development. CONCLUSIONS: We present the HBV deletion distribution patterns and preS deletion substructures in viral genomes that are prevalent in northern China. The accumulation of preS deletion mutants during nucleos(t)ide analog therapy may be due to viral escape from host immuno-surveillance.

Concepts: DNA, Gene, Virus, Cirrhosis, Hepatitis, Antiviral drug, Hepatitis B, Deletion

147

Clinical signs and symptoms of different airway pathogens are generally indistinguishable, making laboratory tests essential for clinical decisions regarding isolation and antiviral therapy. Immunochromatographic tests (ICT) and direct immunofluorescence assays (DFA) have lower sensitivities and specificities than molecular assays, but have the advantage of quick turnaround times and ease-of-use.

Concepts: Virus, Chemistry, Symptom, Antiviral drug, Influenza, Assay, Medical sign, Human respiratory syncytial virus

124

 To determine whether the incidence of pneumonia, peritonsillar abscess, mastoiditis, empyema, meningitis, intracranial abscess, and Lemierre’s syndrome is higher in general practices that prescribe fewer antibiotics for self limiting respiratory tract infections (RTIs).

Concepts: Inflammation, Medicine, Epidemiology, Bacteria, Staphylococcus aureus, Antiviral drug, Empyema

111

Background During the spring of 2013, a novel avian-origin influenza A (H7N9) virus emerged and spread among humans in China. Data were lacking on the clinical characteristics of the infections caused by this virus. Methods Using medical charts, we collected data on 111 patients with laboratory-confirmed avian-origin influenza A (H7N9) infection through May 10, 2013. Results Of the 111 patients we studied, 76.6% were admitted to an intensive care unit (ICU), and 27.0% died. The median age was 61 years, and 42.3% were 65 years of age or older; 31.5% were female. A total of 61.3% of the patients had at least one underlying medical condition. Fever and cough were the most common presenting symptoms. On admission, 108 patients (97.3%) had findings consistent with pneumonia. Bilateral ground-glass opacities and consolidation were the typical radiologic findings. Lymphocytopenia was observed in 88.3% of patients, and thrombocytopenia in 73.0%. Treatment with antiviral drugs was initiated in 108 patients (97.3%) at a median of 7 days after the onset of illness. The median times from the onset of illness and from the initiation of antiviral therapy to a negative viral test result on real-time reverse-transcriptase-polymerase-chain-reaction assay were 11 days (interquartile range, 9 to 16) and 6 days (interquartile range, 4 to 7), respectively. Multivariate analysis revealed that the presence of a coexisting medical condition was the only independent risk factor for the acute respiratory distress syndrome (ARDS) (odds ratio, 3.42; 95% confidence interval, 1.21 to 9.70; P=0.02). Conclusions During the evaluation period, the novel H7N9 virus caused severe illness, including pneumonia and ARDS, with high rates of ICU admission and death. (Funded by the National Natural Science Foundation of China and others.).

Concepts: Epidemiology, Pulmonology, Virus, Pneumonia, Intensive care medicine, Acute respiratory distress syndrome, Antiviral drug, Influenza

78

Although vaccines confer protection against influenza A viruses, antiviral treatment becomes the first line of defense during pandemics because there is insufficient time to produce vaccines. Current antiviral drugs are susceptible to drug resistance, and developing new antivirals is essential. We studied host defense peptides from the skin of the South Indian frog and demonstrated that one of these, which we named “urumin,” is virucidal for H1 hemagglutinin-bearing human influenza A viruses. This peptide specifically targeted the conserved stalk region of H1 hemagglutinin and was effective against drug-resistant H1 influenza viruses. Using electron microscopy, we showed that this peptide physically destroyed influenza virions. It also protected naive mice from lethal influenza infection. Urumin represents a unique class of anti-influenza virucide that specifically targets the hemagglutinin stalk region, similar to targeting of antibodies induced by universal influenza vaccines. Urumin therefore has the potential to contribute to first-line anti-viral treatments during influenza outbreaks.

Concepts: Immune system, Protein, Virus, Antiviral drug, Influenza, Avian influenza, Influenza pandemic, Antibiotic

75

As the predominant aetiological agent of the common cold, human rhinovirus (HRV) is the leading cause of human infectious disease. Early studies showed that a monovalent formalin-inactivated HRV vaccine can be protective, and virus-neutralizing antibodies (nAb) correlated with protection. However, co-circulation of many HRV types discouraged further vaccine efforts. Here, we test the hypothesis that increasing virus input titres in polyvalent inactivated HRV vaccine may result in broad nAb responses. We show that serum nAb against many rhinovirus types can be induced by polyvalent, inactivated HRVs plus alhydrogel (alum) adjuvant. Using formulations up to 25-valent in mice and 50-valent in rhesus macaques, HRV vaccine immunogenicity was related to sufficient quantity of input antigens, and valency was not a major factor for potency or breadth of the response. Thus, we have generated a vaccine capable of inducing nAb responses to numerous and diverse HRV types.

Concepts: Immune system, Antiviral drug, Influenza, Primate, Rhesus Macaque, Common cold, Rhinovirus, Pleconaril

72

Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.

Concepts: Protein, Gene, Antiviral drug, Interferon, Influenza, Common cold, Rhinovirus, Pleconaril

71

Without baseline human immunity to the emergent avian influenza A(H7N9) virus, neuraminidase inhibitors are vital for controlling viral replication in severe infections. An amino acid change in the viral neuraminidase associated with drug resistance, NA-R292K (N2 numbering), has been found in some H7N9 clinical isolates. Here we assess the impact of the NA-R292K substitution on antiviral sensitivity and viral replication, pathogenicity and transmissibility of H7N9 viruses. Our data indicate that an H7N9 isolate encoding the NA-R292K substitution is highly resistant to oseltamivir and peramivir and partially resistant to zanamivir. Furthermore, H7N9 reassortants with and without the resistance mutation demonstrate comparable viral replication in primary human respiratory cells, virulence in mice and transmissibility in guinea pigs. Thus, in stark contrast to oseltamivir-resistant seasonal influenza A(H3N2) viruses, H7N9 virus replication and pathogenicity in these models are not substantially altered by the acquisition of high-level oseltamivir resistance due to the NA-R292K mutation.

Concepts: Virus, Antiviral drug, Influenza, Oseltamivir, Neuraminidase, Viral neuraminidase, Zanamivir, Neuraminidase inhibitor