Discover the most talked about and latest scientific content & concepts.

Concept: Antioxidant


The vast majority of all agents used to directly kill cancer cells (ionizing radiation, most chemotherapeutic agents and some targeted therapies) work through either directly or indirectly generating reactive oxygen species that block key steps in the cell cycle. As mesenchymal cancers evolve from their epithelial cell progenitors, they almost inevitably possess much-heightened amounts of antioxidants that effectively block otherwise highly effective oxidant therapies. Also key to better understanding is why and how the anti-diabetic drug metformin (the world’s most prescribed pharmaceutical product) preferentially kills oxidant-deficient mesenchymal p53(- -)cells. A much faster timetable should be adopted towards developing more new drugs effective against p53(- -) cancers.

Concepts: Cancer, Ionizing radiation, Metastasis, Oncology, Antioxidant, Chemotherapy, Radiation therapy, Leukemia


This study was conducted with the objective of testing the hypothesis that tomato fruits from organic farming accumulate more nutritional compounds, such as phenolics and vitamin C as a consequence of the stressing conditions associated with farming system. Growth was reduced in fruits from organic farming while titratable acidity, the soluble solids content and the concentrations in vitamin C were respectively +29%, +57% and +55% higher at the stage of commercial maturity. At that time, the total phenolic content was +139% higher than in the fruits from conventional farming which seems consistent with the more than two times higher activity of phenylalanine ammonia lyase (PAL) we observed throughout fruit development in fruits from organic farming. Cell membrane lipid peroxidation (LPO) degree was 60% higher in organic tomatoes. SOD activity was also dramatically higher in the fruits from organic farming. Taken together, our observations suggest that tomato fruits from organic farming experienced stressing conditions that resulted in oxidative stress and the accumulation of higher concentrations of soluble solids as sugars and other compounds contributing to fruit nutritional quality such as vitamin C and phenolic compounds.

Concepts: Protein, Agriculture, Antioxidant, Vitamin C, Fruit, Tomato, Vegetable, Organic farming


Thirdhand smoke (THS) is the accumulation of secondhand smoke on environmental surfaces. THS is found on the clothing and hair of smokers as well as on surfaces in homes and cars of smokers. Exposure occurs by ingestion, inhalation and dermal absorption. Children living in homes of smokers are at highest risk because they crawl on the floor, touch parents' clothing/hair and household objects. Using mice exposed to THS under conditions that mimic exposure of humans, we show that THS increases cellular oxidative stress by increasing superoxide dismutase (SOD) activity and hydrogen peroxide (H2O2) levels while reducing the activity of antioxidant enzymes catalase and glutathione peroxidase (GPx) that break down H2O2 into H2O and O2. This results in lipid peroxidation, protein nitrosylation and DNA damage. Consequences of these cell and molecular changes are hyperglycemia and insulinemia. Indeed, we found reduced levels of insulin receptor, PI3K, AKT, all important molecules in insulin signaling and glucose uptake by cells. To determine whether these effects on THS-induced insulin resistance are due to increase in oxidative stress, we treated mice exposed to THS with the antioxidants N-acetyl cysteine (NAC) and alpha-tocopherol (alpha-toc) and showed that the oxidative stress, the molecular damage, and the insulin resistance, were significantly reversed. Conversely, feeding the mice with chow that mimics “western diet”, which is known to increase oxidative stress, while exposing the mice to THS, further increased the oxidative stress and aggravated hyperglycemia and insulinemia. In conclusion, THS exposure results in insulin resistance in the form of non-obese type II diabetes (NODII) through oxidative stress. If confirmed in humans, these studies could have a major impact on how people view exposure to environmental tobacco toxins, in particular to children, elderly and workers in environments where tobacco smoke has taken place.

Concepts: Protein, Antioxidant, Redox, Oxidative stress, Reactive oxygen species, Superoxide dismutase, Hydrogen peroxide, Glutathione


Glyphosate tolerant genetically modified (GM) maize NK603 was assessed as ‘substantially equivalent’ to its isogenic counterpart by a nutrient composition analysis in order to be granted market approval. We have applied contemporary in depth molecular profiling methods of NK603 maize kernels (sprayed or unsprayed with Roundup) and the isogenic corn to reassess its substantial equivalence status. Proteome profiles of the maize kernels revealed alterations in the levels of enzymes of glycolysis and TCA cycle pathways, which were reflective of an imbalance in energy metabolism. Changes in proteins and metabolites of glutathione metabolism were indicative of increased oxidative stress. The most pronounced metabolome differences between NK603 and its isogenic counterpart consisted of an increase in polyamines including N-acetyl-cadaverine (2.9-fold), N-acetylputrescine (1.8-fold), putrescine (2.7-fold) and cadaverine (28-fold), which depending on context can be either protective or a cause of toxicity. Our molecular profiling results show that NK603 and its isogenic control are not substantially equivalent.

Concepts: Protein, Metabolism, Adenosine triphosphate, Antioxidant, Oxidative phosphorylation, Cellular respiration, Nicotinamide adenine dinucleotide, Glycolysis


Vitamin E is a fat-soluble vitamin with antioxidant properties. Tocopherols are the predominant form of vitamin E found in the diet and in supplements and have garnered interest for their potential cancer therapeutic and preventive effects, such as the dephosphorylation of Akt, a serine/threonine kinase with a pivotal role in cell growth, survival, and metabolism. Dephosphorylation of Akt at Ser(473) substantially reduces its catalytic activity and inhibits downstream signaling. We found that the mechanism by which α-tocopherol and γ-tocopherol facilitate this site-specific dephosphorylation of Akt was mediated through the pleckstrin homology (PH) domain-dependent recruitment of Akt and PHLPP1 (PH domain leucine-rich repeat protein phosphatase, isoform 1) to the plasma membrane. We structurally optimized these tocopherols to obtain derivatives with greater in vitro potency and in vivo tumor-suppressive activity in two prostate xenograft tumor models. Binding affinities for the PH domains of Akt and PHLPP1 were greater than for other PH domain-containing proteins, which may underlie the preferential recruitment of these proteins to membranes containing tocopherols. Molecular modeling revealed the structural determinants of the interaction with the PH domain of Akt that may inform strategies for continued structural optimization. By describing a mechanism by which tocopherols facilitate the dephosphorylation of Akt at Ser(473), we provide insights into the mode of antitumor action of tocopherols and a rationale for the translational development of tocopherols into novel PH domain-targeted Akt inhibitors.

Concepts: Protein, Protein structure, Signal transduction, Metabolism, Enzyme, Cell membrane, Antioxidant, PHLPP


The impairment of liver function by low environmentally relevant doses of glyphosate-based herbicides (GBH) is still a debatable and unresolved matter. Previously we have shown that rats administered for 2 years with 0.1 ppb (50 ng/L glyphosate equivalent dilution; 4 ng/kg body weight/day daily intake) of a Roundup GBH formulation showed signs of enhanced liver injury as indicated by anatomorphological, blood/urine biochemical changes and transcriptome profiling. Here we present a multiomic study combining metabolome and proteome liver analyses to obtain further insight into the Roundup-induced pathology. Proteins significantly disturbed (214 out of 1906 detected, q < 0.05) were involved in organonitrogen metabolism and fatty acid β-oxidation. Proteome disturbances reflected peroxisomal proliferation, steatosis and necrosis. The metabolome analysis (55 metabolites altered out of 673 detected, p < 0.05) confirmed lipotoxic conditions and oxidative stress by showing an activation of glutathione and ascorbate free radical scavenger systems. Additionally, we found metabolite alterations associated with hallmarks of hepatotoxicity such as γ-glutamyl dipeptides, acylcarnitines, and proline derivatives. Overall, metabolome and proteome disturbances showed a substantial overlap with biomarkers of non-alcoholic fatty liver disease and its progression to steatohepatosis and thus confirm liver functional dysfunction resulting from chronic ultra-low dose GBH exposure.

Concepts: Metabolism, Antioxidant, Oxidative stress, Radical, Non-alcoholic fatty liver disease, Fatty liver, Steatosis, Roundup


BACKGROUND: Methylsulfonylmethane (MSM) has been reported to provide anti-inflammatory and antioxidant effects in both animal and man. Strenuous resistance exercise has the potential to induce both inflammation and oxidative stress. Using a pilot (proof of concept) study design, we determined the influence of MSM on markers of exercise recovery and performance in healthy men. METHODS: Eight, healthy men (27.1 +/- 6.9 yrs old) who were considered to be moderately exercise-trained (exercising <150 minutes per week) were randomly assigned to ingest MSM at either 1.5 grams per day or 3.0 grams per day for 30 days (28 days before and 2 days following exercise). Before and after the 28 day intervention period, subjects performed 18 sets of knee extension exercise in an attempt to induce muscle damage (and to be used partly as a measure of exercise performance). Sets 1--15 were performed at a predetermined weight for 10 repetitions each, while sets 16--18 were performed to muscular failure. Muscle soreness (using a 5-point Likert scale), fatigue (using the fatigue-inertia subset of the Profile of Mood States), blood antioxidant status (glutathione and Trolox Equivalent Antioxidant Capacity [TEAC]), and blood homocysteine were measured before and after exercise, pre and post intervention. Exercise performance (total work performed during sets 16--18 of knee extension testing) was also measured pre and post intervention. RESULTS: Muscle soreness increased following exercise and a trend was noted for a reduction in muscle soreness with 3.0 grams versus 1.5 grams of MSM (p = 0.080), with a 1.0 point difference between dosages. Fatigue was slightly reduced with MSM (p = 0.073 with 3.0 grams; p = 0.087 for both dosages combined). TEAC increased significantly following exercise with 3.0 grams of MSM (p = 0.035), while homocysteine decreased following exercise for both dosages combined (p = 0.007). No significant effects were noted for glutathione or total work performed during knee extension testing (p > 0.05). CONCLUSION: MSM, especially when provided at 3.0 grams per day, may favorably influence selected markers of exercise recovery. More work is needed to extend these findings, in particular using a larger sample of subjects and the inclusion of additional markers of exercise recovery and performance.

Concepts: Antioxidant, Oxidative stress, Muscle, Physical exercise, Weight training, Exercise physiology, Likert scale, Oxygen radical absorbance capacity


Magnolia grandiflora L. flower is wildly used in Asian as a traditional herbal medication. The purpose of the study was to investigate the antimelanogenic and antioxidant properties of Magnolia grandiflora L. flower extract. In the study, the inhibitory effects of M. grandiflora L. flower extract on mushroom tyrosinase, B16F10 intracellular tyrosinase activity and melanin content were determined spectrophotometrically. Meanwhile, the antioxidative capacity of the flower extract was also investigated.

Concepts: Antioxidant, Melanin, Herbalism, Melanocyte, Tyrosinase, Magnolia, Magnolia grandiflora


Sirtuins are protein deacetylases regulating metabolism, stress responses, and aging processes, and they were suggested to mediate the lifespan extending effect of a low calorie diet. Sirtuin activation by the polyphenol resveratrol can mimic such lifespan extending effects and alleviate metabolic diseases. The mechanism of Sirtuin stimulation is unknown, hindering the development of improved activators. Here we show that resveratrol inhibits human Sirt3 and stimulates Sirt5, in addition to Sirt1, against fluorophore-labeled peptide substrates but also against peptides and proteins lacking the non-physiological fluorophore modification. We further present crystal structures of Sirt3 and Sirt5 in complex with fluorogenic substrate peptide and modulator. The compound acts as a top cover, closing the Sirtuin’s polypeptide binding pocket and influencing details of peptide binding by directly interacting with this substrate. Our results provide a mechanism for the direct activation of Sirtuins by small molecules and suggest that activators have to be tailored to a specific Sirtuin/substrate pair.

Concepts: Protein, Amino acid, Metabolism, Histone deacetylase, Antioxidant, Resveratrol, Sirtuin, Sir2


Tardigrades are microscopic aquatic animals with remarkable abilities to withstand harsh physical conditions such as dehydration or exposure to harmful highly energetic radiation. The mechanisms responsible for such robustness are presently little known, but protection against oxidative stresses is thought to play a role. Despite the fact that many tardigrade species are variously pigmented, scarce information is available about this characteristic. By applying Raman micro-spectroscopy on living specimens, pigments in the tardigrade Echiniscus blumi are identified as carotenoids, and their distribution within the animal body is visualized. The dietary origin of these pigments is demonstrated, as well as their presence in the eggs and in eye-spots of these animals, together with their absence in the outer layer of the animal (i.e., cuticle and epidermis). Using in-vivo semi-quantitative Raman micro-spectroscopy, a decrease in carotenoid content is detected after inducing oxidative stress, demonstrating that this approach can be used for studying the role of carotenoids in oxidative stress-related processes in tardigrades. This approach could be thus used in further investigations to test several hypotheses concerning the function of these carotenoids in tardigrades as photo-protective pigments against ionizing radiations or as antioxidants defending these organisms against the oxidative stress occurring during desiccation processes.

Concepts: Photosynthesis, Antioxidant, Arthropod, Oxidative stress, In vivo, Carotenoid, Lutein, Tardigrade