SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Antioxidant

363

The vast majority of all agents used to directly kill cancer cells (ionizing radiation, most chemotherapeutic agents and some targeted therapies) work through either directly or indirectly generating reactive oxygen species that block key steps in the cell cycle. As mesenchymal cancers evolve from their epithelial cell progenitors, they almost inevitably possess much-heightened amounts of antioxidants that effectively block otherwise highly effective oxidant therapies. Also key to better understanding is why and how the anti-diabetic drug metformin (the world’s most prescribed pharmaceutical product) preferentially kills oxidant-deficient mesenchymal p53(- -)cells. A much faster timetable should be adopted towards developing more new drugs effective against p53(- -) cancers.

Concepts: Cancer, Ionizing radiation, Metastasis, Oncology, Antioxidant, Chemotherapy, Radiation therapy, Leukemia

246

This study was conducted with the objective of testing the hypothesis that tomato fruits from organic farming accumulate more nutritional compounds, such as phenolics and vitamin C as a consequence of the stressing conditions associated with farming system. Growth was reduced in fruits from organic farming while titratable acidity, the soluble solids content and the concentrations in vitamin C were respectively +29%, +57% and +55% higher at the stage of commercial maturity. At that time, the total phenolic content was +139% higher than in the fruits from conventional farming which seems consistent with the more than two times higher activity of phenylalanine ammonia lyase (PAL) we observed throughout fruit development in fruits from organic farming. Cell membrane lipid peroxidation (LPO) degree was 60% higher in organic tomatoes. SOD activity was also dramatically higher in the fruits from organic farming. Taken together, our observations suggest that tomato fruits from organic farming experienced stressing conditions that resulted in oxidative stress and the accumulation of higher concentrations of soluble solids as sugars and other compounds contributing to fruit nutritional quality such as vitamin C and phenolic compounds.

Concepts: Protein, Agriculture, Antioxidant, Vitamin C, Fruit, Tomato, Vegetable, Organic farming

230

The impairment of liver function by low environmentally relevant doses of glyphosate-based herbicides (GBH) is still a debatable and unresolved matter. Previously we have shown that rats administered for 2 years with 0.1 ppb (50 ng/L glyphosate equivalent dilution; 4 ng/kg body weight/day daily intake) of a Roundup GBH formulation showed signs of enhanced liver injury as indicated by anatomorphological, blood/urine biochemical changes and transcriptome profiling. Here we present a multiomic study combining metabolome and proteome liver analyses to obtain further insight into the Roundup-induced pathology. Proteins significantly disturbed (214 out of 1906 detected, q < 0.05) were involved in organonitrogen metabolism and fatty acid β-oxidation. Proteome disturbances reflected peroxisomal proliferation, steatosis and necrosis. The metabolome analysis (55 metabolites altered out of 673 detected, p < 0.05) confirmed lipotoxic conditions and oxidative stress by showing an activation of glutathione and ascorbate free radical scavenger systems. Additionally, we found metabolite alterations associated with hallmarks of hepatotoxicity such as γ-glutamyl dipeptides, acylcarnitines, and proline derivatives. Overall, metabolome and proteome disturbances showed a substantial overlap with biomarkers of non-alcoholic fatty liver disease and its progression to steatohepatosis and thus confirm liver functional dysfunction resulting from chronic ultra-low dose GBH exposure.

Concepts: Metabolism, Antioxidant, Oxidative stress, Radical, Non-alcoholic fatty liver disease, Fatty liver, Steatosis, Roundup

212

Thirdhand smoke (THS) is the accumulation of secondhand smoke on environmental surfaces. THS is found on the clothing and hair of smokers as well as on surfaces in homes and cars of smokers. Exposure occurs by ingestion, inhalation and dermal absorption. Children living in homes of smokers are at highest risk because they crawl on the floor, touch parents' clothing/hair and household objects. Using mice exposed to THS under conditions that mimic exposure of humans, we show that THS increases cellular oxidative stress by increasing superoxide dismutase (SOD) activity and hydrogen peroxide (H2O2) levels while reducing the activity of antioxidant enzymes catalase and glutathione peroxidase (GPx) that break down H2O2 into H2O and O2. This results in lipid peroxidation, protein nitrosylation and DNA damage. Consequences of these cell and molecular changes are hyperglycemia and insulinemia. Indeed, we found reduced levels of insulin receptor, PI3K, AKT, all important molecules in insulin signaling and glucose uptake by cells. To determine whether these effects on THS-induced insulin resistance are due to increase in oxidative stress, we treated mice exposed to THS with the antioxidants N-acetyl cysteine (NAC) and alpha-tocopherol (alpha-toc) and showed that the oxidative stress, the molecular damage, and the insulin resistance, were significantly reversed. Conversely, feeding the mice with chow that mimics “western diet”, which is known to increase oxidative stress, while exposing the mice to THS, further increased the oxidative stress and aggravated hyperglycemia and insulinemia. In conclusion, THS exposure results in insulin resistance in the form of non-obese type II diabetes (NODII) through oxidative stress. If confirmed in humans, these studies could have a major impact on how people view exposure to environmental tobacco toxins, in particular to children, elderly and workers in environments where tobacco smoke has taken place.

Concepts: Protein, Antioxidant, Redox, Oxidative stress, Reactive oxygen species, Superoxide dismutase, Hydrogen peroxide, Glutathione

193

Glyphosate tolerant genetically modified (GM) maize NK603 was assessed as ‘substantially equivalent’ to its isogenic counterpart by a nutrient composition analysis in order to be granted market approval. We have applied contemporary in depth molecular profiling methods of NK603 maize kernels (sprayed or unsprayed with Roundup) and the isogenic corn to reassess its substantial equivalence status. Proteome profiles of the maize kernels revealed alterations in the levels of enzymes of glycolysis and TCA cycle pathways, which were reflective of an imbalance in energy metabolism. Changes in proteins and metabolites of glutathione metabolism were indicative of increased oxidative stress. The most pronounced metabolome differences between NK603 and its isogenic counterpart consisted of an increase in polyamines including N-acetyl-cadaverine (2.9-fold), N-acetylputrescine (1.8-fold), putrescine (2.7-fold) and cadaverine (28-fold), which depending on context can be either protective or a cause of toxicity. Our molecular profiling results show that NK603 and its isogenic control are not substantially equivalent.

Concepts: Protein, Metabolism, Adenosine triphosphate, Antioxidant, Oxidative phosphorylation, Cellular respiration, Nicotinamide adenine dinucleotide, Glycolysis

192

Numerous studies have demonstrated the importance of naturally occurring dietary polyphenols in promoting cardiovascular health and emphasized the significant role these compounds play in limiting the effects of cellular aging. Polyphenols such as resveratrol, epigallocatechin gallate (EGCG), and curcumin have been acknowledged for having beneficial effects on cardiovascular health, while some have also been shown to be protective in aging. This review highlights the literature surrounding this topic on the prominently studied and documented polyphenols as pertaining to cardiovascular health and aging.

Concepts: Antioxidant, Catechin, Resveratrol, Polyphenol antioxidant, Play, Polyphenol, Epigallocatechin gallate

185

Vitamin E is a fat-soluble vitamin with antioxidant properties. Tocopherols are the predominant form of vitamin E found in the diet and in supplements and have garnered interest for their potential cancer therapeutic and preventive effects, such as the dephosphorylation of Akt, a serine/threonine kinase with a pivotal role in cell growth, survival, and metabolism. Dephosphorylation of Akt at Ser(473) substantially reduces its catalytic activity and inhibits downstream signaling. We found that the mechanism by which α-tocopherol and γ-tocopherol facilitate this site-specific dephosphorylation of Akt was mediated through the pleckstrin homology (PH) domain-dependent recruitment of Akt and PHLPP1 (PH domain leucine-rich repeat protein phosphatase, isoform 1) to the plasma membrane. We structurally optimized these tocopherols to obtain derivatives with greater in vitro potency and in vivo tumor-suppressive activity in two prostate xenograft tumor models. Binding affinities for the PH domains of Akt and PHLPP1 were greater than for other PH domain-containing proteins, which may underlie the preferential recruitment of these proteins to membranes containing tocopherols. Molecular modeling revealed the structural determinants of the interaction with the PH domain of Akt that may inform strategies for continued structural optimization. By describing a mechanism by which tocopherols facilitate the dephosphorylation of Akt at Ser(473), we provide insights into the mode of antitumor action of tocopherols and a rationale for the translational development of tocopherols into novel PH domain-targeted Akt inhibitors.

Concepts: Protein, Protein structure, Signal transduction, Metabolism, Enzyme, Cell membrane, Antioxidant, PHLPP

180

Increased oxidative stress contributes to development and progression of several human chronic inflammatory diseases. Cherries are a rich source of polyphenols and vitamin C which have anti-oxidant and anti-inflammatory properties. Our aim is to summarize results from human studies regarding health benefits of both sweet and tart cherries, including products made from them (juice, powder, concentrate, capsules); all referred to as cherries here. We found 29 (tart 20, sweet 7, unspecified 2) published human studies which examined health benefits of consuming cherries. Most of these studies were less than 2 weeks of duration (range 5 h to 3 months) and served the equivalent of 45 to 270 cherries/day (anthocyanins 55-720 mg/day) in single or split doses. Two-thirds of these studies were randomized and placebo controlled. Consumption of cherries decreased markers for oxidative stress in 8/10 studies; inflammation in 11/16; exercise-induced muscle soreness and loss of strength in 8/9; blood pressure in 5/7; arthritis in 5/5, and improved sleep in 4/4. Cherries also decreased hemoglobin A1C (HbA1C), Very-low-density lipoprotein (VLDL) and triglycerides/high-density lipoprotein (TG/HDL) in diabetic women, and VLDL and TG/HDL in obese participants. These results suggest that consumption of sweet or tart cherries can promote health by preventing or decreasing oxidative stress and inflammation.

Concepts: Inflammation, Nutrition, Asthma, Atherosclerosis, Diabetes mellitus, Antioxidant, Anti-inflammatory, Vitamin C

174

BACKGROUND: Methylsulfonylmethane (MSM) has been reported to provide anti-inflammatory and antioxidant effects in both animal and man. Strenuous resistance exercise has the potential to induce both inflammation and oxidative stress. Using a pilot (proof of concept) study design, we determined the influence of MSM on markers of exercise recovery and performance in healthy men. METHODS: Eight, healthy men (27.1 +/- 6.9 yrs old) who were considered to be moderately exercise-trained (exercising <150 minutes per week) were randomly assigned to ingest MSM at either 1.5 grams per day or 3.0 grams per day for 30 days (28 days before and 2 days following exercise). Before and after the 28 day intervention period, subjects performed 18 sets of knee extension exercise in an attempt to induce muscle damage (and to be used partly as a measure of exercise performance). Sets 1--15 were performed at a predetermined weight for 10 repetitions each, while sets 16--18 were performed to muscular failure. Muscle soreness (using a 5-point Likert scale), fatigue (using the fatigue-inertia subset of the Profile of Mood States), blood antioxidant status (glutathione and Trolox Equivalent Antioxidant Capacity [TEAC]), and blood homocysteine were measured before and after exercise, pre and post intervention. Exercise performance (total work performed during sets 16--18 of knee extension testing) was also measured pre and post intervention. RESULTS: Muscle soreness increased following exercise and a trend was noted for a reduction in muscle soreness with 3.0 grams versus 1.5 grams of MSM (p = 0.080), with a 1.0 point difference between dosages. Fatigue was slightly reduced with MSM (p = 0.073 with 3.0 grams; p = 0.087 for both dosages combined). TEAC increased significantly following exercise with 3.0 grams of MSM (p = 0.035), while homocysteine decreased following exercise for both dosages combined (p = 0.007). No significant effects were noted for glutathione or total work performed during knee extension testing (p > 0.05). CONCLUSION: MSM, especially when provided at 3.0 grams per day, may favorably influence selected markers of exercise recovery. More work is needed to extend these findings, in particular using a larger sample of subjects and the inclusion of additional markers of exercise recovery and performance.

Concepts: Antioxidant, Oxidative stress, Muscle, Physical exercise, Weight training, Exercise physiology, Likert scale, Oxygen radical absorbance capacity

172

Magnolia grandiflora L. flower is wildly used in Asian as a traditional herbal medication. The purpose of the study was to investigate the antimelanogenic and antioxidant properties of Magnolia grandiflora L. flower extract. In the study, the inhibitory effects of M. grandiflora L. flower extract on mushroom tyrosinase, B16F10 intracellular tyrosinase activity and melanin content were determined spectrophotometrically. Meanwhile, the antioxidative capacity of the flower extract was also investigated.

Concepts: Antioxidant, Melanin, Herbalism, Melanocyte, Tyrosinase, Magnolia, Magnolia grandiflora