SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Antarctic Peninsula

239

The contribution of climate change to shifts in a species' geographic distribution is a critical and often unresolved ecological question. Climate change in Antarctica is asymmetric, with cooling in parts of the continent and warming along the West Antarctic Peninsula (WAP). The Adélie penguin (Pygoscelis adeliae) is a circumpolar meso-predator exposed to the full range of Antarctic climate and is undergoing dramatic population shifts coincident with climate change. We used true presence-absence data on Adélie penguin breeding colonies to estimate past and future changes in habitat suitability during the chick-rearing period based on historic satellite observations and future climate model projections. During the contemporary period, declining Adélie penguin populations experienced more years with warm sea surface temperature compared to populations that are increasing. Based on this relationship, we project that one-third of current Adélie penguin colonies, representing ~20% of their current population, may be in decline by 2060. However, climate model projections suggest refugia may exist in continental Antarctica beyond 2099, buffering species-wide declines. Climate change impacts on penguins in the Antarctic will likely be highly site specific based on regional climate trends, and a southward contraction in the range of Adélie penguins is likely over the next century.

Concepts: Climate, Climate change, Penguin, Antarctica, Sea surface temperature, Southern Ocean, Pygoscelis, Antarctic Peninsula

169

Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator.

Concepts: Predation, Penguin, Regime, Antarctica, Optimal foraging theory, Antarctic Peninsula

97

We describe a new breeding behaviour discovered in emperor penguins; utilizing satellite and aerial-survey observations four emperor penguin breeding colonies have been recorded as existing on ice-shelves. Emperors have previously been considered as a sea-ice obligate species, with 44 of the 46 colonies located on sea-ice (the other two small colonies are on land). Of the colonies found on ice-shelves, two are newly discovered, and these have been recorded on shelves every season that they have been observed, the other two have been recorded both on ice-shelves and sea-ice in different breeding seasons. We conduct two analyses; the first using synthetic aperture radar data to assess why the largest of the four colonies, for which we have most data, locates sometimes on the shelf and sometimes on the sea-ice, and find that in years where the sea-ice forms late, the colony relocates onto the ice-shelf. The second analysis uses a number of environmental variables to test the habitat marginality of all emperor penguin breeding sites. We find that three of the four colonies reported in this study are in the most northerly, warmest conditions where sea-ice is often sub-optimal. The emperor penguin’s reliance on sea-ice as a breeding platform coupled with recent concerns over changed sea-ice patterns consequent on regional warming, has led to their designation as “near threatened” in the IUCN red list. Current climate models predict that future loss of sea-ice around the Antarctic coastline will negatively impact emperor numbers; recent estimates suggest a halving of the population by 2052. The discovery of this new breeding behaviour at marginal sites could mitigate some of the consequences of sea-ice loss; potential benefits and whether these are permanent or temporary need to be considered and understood before further attempts are made to predict the population trajectory of this iconic species.

Concepts: Bird, Penguin, Emperor Penguin, King Penguin, Antarctica, IUCN Red List, Antarctic Peninsula, March of the Penguins

22

Aggregations of young animals are common in a range of endothermic and ectothermic species, yet the adaptive behavior may depend on social circumstance and local conditions. In penguins, many species form aggregations (aka. crèches) for a variety of purposes, whilst others have never been observed exhibiting this behavior. Those that do form aggregations do so for three known benefits: 1) reduced thermoregulatory requirements, 2) avoidance of unrelated-adult aggression, and 3) lower predation risk. In gentoo penguins, Pygoscelis papua, chick aggregations are known to form during the post-guard period, yet the cause of these aggregations is poorly understood. Here, for the first time, we study aggregation behavior in gentoo penguins, examining four study sites along a latitudinal gradient using time-lapse cameras to examine the adaptive benefit of aggregations to chicks. Our results support the idea that aggregations of gentoo chicks decrease an individual’s energetic expenditure when wet, cold conditions are present. However, we found significant differences in aggregation behavior between the lowest latitude site, Maiviken, South Georgia, and two of the higher latitude sites on the Antarctic Peninsula, suggesting this behavior may be colony specific. We provide strong evidence that more chicks aggregate and a larger number of aggregations occur on South Georgia, while the opposite occurs at Petermann Island in Antarctica. Future studies should evaluate multiple seabird colonies within one species before generalizing behaviors based on one location, and past studies may need to be re-evaluated to determine whether chick aggregation and other behaviors are in fact exhibited species-wide.

Concepts: Penguin, Antarctica, Penguins, Pygoscelis, Antarctic Peninsula, Gentoo Penguin

14

Penguins are an important seabird species in Antarctica and are sensitive to climate and environmental changes. Previous studies indicated that penguin populations increased when the climate became warmer and decreased when it became colder in the maritime Antarctic. Here we determined organic markers in a sediment profile collected at Cape Bird, Ross Island, high Antarctic, and reconstructed the history of Adélie penguin colonies at this location over the past 700 years. The region transformed from a seal to a penguin habitat when the Little Ice Age (LIA; 1500-1800 AD) began. Penguins then became the dominant species. Penguin populations were the highest during ca. 1490 to 1670 AD, a cold period, which is contrary to previous results in other regions much farther north. Different responses to climate change may occur at low latitudes and high latitudes in the Antarctic, even if for same species.

Concepts: Climate, Penguin, Solar variation, Antarctica, Latitude, Southern Ocean, Antarctic Peninsula, Antarctic Circle

11

Seabirds are considered to be useful and practical indicators of the state of marine ecosystems because they integrate across changes in the lower trophic levels and the physical environment. Signals from this key group of species can indicate broad scale impacts or response to environmental change. Recent studies of penguin populations, the most commonly abundant Antarctic seabirds in the west Antarctic Peninsula and western Ross Sea, have demonstrated that physical changes in Antarctic marine environments have profound effects on biota at high trophic levels. Large populations of the circumpolar-breeding Adélie penguin occur in East Antarctica, but direct, standardized population data across much of this vast coastline have been more limited than in other Antarctic regions. We combine extensive new population survey data, new population estimation methods, and re-interpreted historical survey data to assess decadal-scale change in East Antarctic Adélie penguin breeding populations. We show that, in contrast to the west Antarctic Peninsula and western Ross Sea where breeding populations have decreased or shown variable trends over the last 30 years, East Antarctic regional populations have almost doubled in abundance since the 1980’s and have been increasing since the earliest counts in the 1960’s. The population changes are associated with five-year lagged changes in the physical environment, suggesting that the changing environment impacts primarily on the pre-breeding age classes. East Antarctic marine ecosystems have been subject to a number of changes over the last 50 years which may have influenced Adélie penguin population growth, including decadal-scale climate variation, an inferred mid-20th century sea-ice contraction, and early-to-mid 20th century exploitation of fish and whale populations.

Concepts: Life, Environment, Ecology, Natural environment, Penguin, Antarctica, Southern Ocean, Antarctic Peninsula

11

The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula in 1995 and 2002 confirm the impact of southward-propagating climate warming in this region. Recent mass and dynamic changes of Larsen B’s southern neighbour Larsen C, the fourth largest ice shelf in Antarctica, may herald a similar instability. Here, using a validated ice-shelf model run in diagnostic mode, constrained by satellite and in situ geophysical data, we identify the nature of this potential instability. We demonstrate that the present-day spatial distribution and orientation of the principal stresses within Larsen C ice shelf are akin to those within pre-collapse Larsen B. When Larsen B’s stabilizing frontal portion was lost in 1995, the unstable remaining shelf accelerated, crumbled and ultimately collapsed. We hypothesize that Larsen C ice shelf may suffer a similar fate if it were not stabilized by warm and mechanically soft marine ice, entrained within narrow suture zones.

Concepts: Glacier, Antarctica, Global warming, Ice shelf, British Antarctic Territory, Antarctic Peninsula, Larsen Ice Shelf, Carl Anton Larsen

9

The relationship between population structure and demographic history is critical to understanding microevolution and for predicting the resilience of species to environmental change. Using mitochondrial DNA from extant colonies and radiocarbon-dated subfossils, we present the first microevolutionary analysis of emperor penguins (Aptenodytes forsteri) and show their population trends throughout the last glacial maximum (LGM, 19.5-16 kya) and during the subsequent period of warming and sea ice retreat. We found evidence for three mitochondrial clades within emperor penguins, suggesting that they were isolated within three glacial refugia during the LGM. One of these clades has remained largely isolated within the Ross Sea, while the two other clades have intermixed around the coast of Antarctica from Adélie Land to the Weddell Sea. The differentiation of the Ross Sea population has been preserved despite rapid population growth and opportunities for migration. Low effective population sizes during the LGM, followed by a rapid expansion around the beginning of the Holocene, suggest that an optimum set of sea ice conditions exist for emperor penguins, corresponding to available foraging area.

Concepts: Bird, Penguin, Emperor Penguin, King Penguin, Antarctica, Glaciology, McMurdo Sound, Antarctic Peninsula

8

Human footprint models allow visualization of human spatial pressure across the globe. Up until now, Antarctica has been omitted from global footprint models, due possibly to the lack of a permanent human population and poor accessibility to necessary datasets. Yet Antarctic ecosystems face increasing cumulative impacts from the expanding tourism industry and national Antarctic operator activities, the management of which could be improved with footprint assessment tools. Moreover, Antarctic ecosystem dynamics could be modelled to incorporate human drivers. Here we present the first model of estimated human footprint across predominantly ice-free areas of Antarctica. To facilitate integration into global models, the Antarctic model was created using methodologies applied elsewhere with land use, density and accessibility features incorporated. Results showed that human pressure is clustered predominantly in the Antarctic Peninsula, southern Victoria Land and several areas of East Antarctica. To demonstrate the practical application of the footprint model, it was used to investigate the potential threat to Antarctica’s avifauna by local human activities. Relative footprint values were recorded for all 204 of Antarctica’s Important Bird Areas (IBAs) identified by BirdLife International and the Scientific Committee on Antarctic Research (SCAR). Results indicated that formal protection of avifauna under the Antarctic Treaty System has been unsystematic and is lacking for penguin and flying bird species in some of the IBAs most vulnerable to human activity and impact. More generally, it is hoped that use of this human footprint model may help Antarctic Treaty Consultative Meeting policy makers in their decision making concerning avifauna protection and other issues including cumulative impacts, environmental monitoring, non-native species and terrestrial area protection.

Concepts: Bird, Ecosystem, Antarctica, Southern Ocean, British Antarctic Territory, Antarctic Peninsula, Queen Maud Land, Argentine Antarctica

7

Life on Antarctica’s coastal seabed rollercoasters between food-rich, open-water, iceberg-scoured summers and food-sparse winters, when the sea surface freezes into ‘fast-ice’, locking up icebergs, reducing their seabed collisions (scouring). In the last half century, there have been massive losses of winter sea ice along the Antarctic Peninsula, as well as retreat of glaciers and disintegration of ice shelves coincident with rapid recent regional warming [1]. More calving from glaciers and ice shelves coupled with less winter ice should increase scouring of the seabed - which is where most Antarctic species live (http//www.SCAR-MarBIN.be). Polar benthos are considered highly sensitive to change, slow growing and all endemic. However, the only published effect of increased scouring on benthos has been increased mortality of the pioneer species Fenstrulina rugula, adjacent to Rothera Research station, West Antarctic Peninsula [2] (Supplemental information; Figure S1). It is likely that the recent increase in mortality in this species reflects the mortality of other species on hard substrata. A 2013 survey dive at a nearby locality (Lagoon Island) revealed large areas where no live mega- or macro-fauna could be found, the first time this has been observed there despite being regularly visited by scientific divers since 1997. Here, we report the first assemblage level changes coincident with increased scouring.

Concepts: Glacier, Antarctica, Ice shelf, Glaciology, Southern Ocean, Antarctic Peninsula, Iceberg, Rothera Research Station