Discover the most talked about and latest scientific content & concepts.

Concept: Antagomir


MicroRNAs (miRNAs) are small, non-coding RNAs that regulate various biological processes, primarily through interaction with messenger RNAs. The levels of specific, circulating miRNAs in blood have been shown to associate with various pathological conditions including cancers. These miRNAs have great potential as biomarkers for various pathophysiological conditions. In this study we focused on different sample types' effects on the spectrum of circulating miRNA in blood. Using serum and corresponding plasma samples from the same individuals, we observed higher miRNA concentrations in serum samples compared to the corresponding plasma samples. The difference between serum and plasma miRNA concentration showed some associations with miRNA from platelets, which may indicate that the coagulation process may affect the spectrum of extracellular miRNA in blood. Several miRNAs also showed platform dependent variations in measurements. Our results suggest that there are a number of factors that might affect the measurement of circulating miRNA concentration. Caution must be taken when comparing miRNA data generated from different sample types or measurement platforms.

Concepts: Gene, Blood, RNA, MicroRNA, Coagulation, Messenger RNA, Platelet, Antagomir


Despite a large amount of microRNAs (miRNAs) have been validated to play crucial roles in human biology and disease, there is little systematic insight into the nature and scale of the potential synergistic interactions executed by miRNAs themselves. Here we established an integrated parameter synergy score to determine miRNA synergy, by combining the two mechanisms for miRNA-miRNA interactions, miRNA-mediated gene co-regulation and functional association between target gene products, into one single parameter. Receiver operating characteristic (ROC) analysis indicated that synergy score accurately identified the gene ontology-defined miRNA synergy (AUC = 0.9415, p<0.001). Only a very small portion of the random miRNA-miRNA combinations generated potent synergy, implying poor expectancy of widespread synergy. However, targeting more key genes made two miRNAs more likely to act synergistically. Compared to other miRNAs, miR-21 was a highly exceptional case due to frequent appearance in the top synergistic miRNA pairs. This result highlighted its essential role in coordinating or strengthening physiological and pathological functions of other miRNAs. The synergistic effect of miR-21 and miR-1 were functionally validated for their significant influences on myocardial apoptosis, cardiac hypertrophy and fibrosis. The novel approach established in this study enables easy and effective identification of condition-restricted potent miRNA synergy simply by concentrating the available protein interactomics and miRNA-target interaction data into a single parameter synergy score. Our results may be important for understanding synergistic gene regulation by miRNAs and may have significant implications for miRNA combination therapy of cardiovascular disease.

Concepts: DNA, Gene, Biology, RNA, MicroRNA, Synergy, Receiver operating characteristic, Antagomir


By rationally designing a functional molecular probe with high sequence specificity and taking the advantages of sensitive isothermal amplification with simple operation, we develop a one-pot hairpin-mediated quadratic enzymatic amplification (HQEA) strategy for microRNA (miRNA) detection. Our method exhibits ultra-high sensitivity toward the miR-21 with a detection limit of 10 fM at 37 ºC and 1 aM at 4 ºC that corresponds to 9 strands of miR-21 in a 15 µL sample, and is capable of distinguishing among miRNA family members. More importantly, the proposed approach is also sensitive and selective when apply it in crude extrac-tions from MCF-7, PC3 cell lines, and even patient tissues from intraductal carcinoma and invasive ductal carcinoma of the breast.

Concepts: Gene, Cancer, Breast cancer, RNA, MicroRNA, Mammary ductal carcinoma, Ductal carcinoma, Antagomir


Most studies of microRNA (miRNA) and disease have examined tissue-specific expression in limited numbers of samples. The presence of circulating miRNAs in plasma samples provides the opportunity to examine prospective associations between miRNA expression and disease in initially healthy individuals. However, little data exist on the reproducibility of miRNAs in stored plasma.

Concepts: Gene, RNA, MicroRNA, Messenger RNA, Antagomir


The relationship between microRNA regulation and the specification of behavior is only beginning to be explored. Here we find that mutation of a single microRNA locus (miR-iab4/8) in Drosophila larvae affects the animal’s capacity to correct its orientation if turned upside-down (self-righting). One of the microRNA targets involved in this behavior is the Hox gene Ultrabithorax whose derepression in two metameric neurons leads to self-righting defects. In vivo neural activity analysis reveals that these neurons, the self-righting node (SRN), have different activity patterns in wild type and miRNA mutants while thermogenetic manipulation of SRN activity results in changes in self-righting behavior. Our work thus reveals a microRNA-encoded behavior and suggests that other microRNAs might also be involved in behavioral control in Drosophila and other species.

Concepts: DNA, Gene, RNA, Insect, MicroRNA, Antagomir


Biogenesis of canonical microRNAs (miRNAs) involves multiple steps: nuclear processing of primary miRNA (pri-miRNA) by DROSHA, nuclear export of precursor miRNA (pre-miRNA) by Exportin 5 (XPO5), and cytoplasmic processing of pre-miRNA by DICER. To gain a deeper understanding of the contribution of each of these maturation steps, we deleted DROSHA, XPO5, and DICER in the same human cell line, and analyzed their effects on miRNA biogenesis. Canonical miRNA production was completely abolished in DROSHA-deleted cells, whereas we detected a few DROSHA-independent miRNAs including three previously unidentified noncanonical miRNAs (miR-7706, miR-3615, and miR-1254). In contrast to DROSHA knockout, many canonical miRNAs were still detected without DICER albeit at markedly reduced levels. In the absence of DICER, pre-miRNAs are loaded directly onto AGO and trimmed at the 3' end, yielding miRNAs from the 5' strand (5p miRNAs). Interestingly, in XPO5 knockout cells, most miRNAs are affected only modestly, suggesting that XPO5 is necessary but not critical for miRNA maturation. Our study demonstrates an essential role of DROSHA and an important contribution of DICER in the canonical miRNA pathway, and reveals that the function of XPO5 can be complemented by alternative mechanisms. Thus, this study allows us to understand differential contributions of key biogenesis factors, and provides with valuable resources for miRNA research.

Concepts: DNA, Gene, Cell nucleus, RNA, Cell biology, MicroRNA, Messenger RNA, Antagomir


Terminal uridylyl transferases (TUTs) function as integral regulators of microRNA (miRNA) biogenesis. Using biochemistry, single-molecule, and deep sequencing techniques, we here investigate the mechanism by which human TUT7 (also known as ZCCHC6) recognizes and uridylates precursor miRNAs (pre-miRNAs) in the absence of Lin28. We find that the overhang of a pre-miRNA is the key structural element that is recognized by TUT7 and its paralogues, TUT4 (ZCCHC11) and TUT2 (GLD2/PAPD4). For group II pre-miRNAs, which have a 1-nt 3' overhang, TUT7 restores the canonical end structure (2-nt 3' overhang) through mono-uridylation, thereby promoting miRNA biogenesis. For pre-miRNAs where the 3' end is further recessed into the stem (as in 3' trimmed pre-miRNAs), TUT7 generates an oligo-U tail that leads to degradation. In contrast to Lin28-stimulated oligo-uridylation, which is processive, a distributive mode is employed by TUT7 for both mono- and oligo-uridylation in the absence of Lin28. The overhang length dictates the frequency (but not duration) of the TUT7-RNA interaction, thus explaining how TUT7 differentiates pre-miRNA species with different overhangs. Our study reveals dual roles and mechanisms of uridylation in repair and removal of defective pre-miRNAs.

Concepts: Gene, RNA, MicroRNA, Antagomir


Identifying, amongst millions of publications available in MEDLINE, those that are relevant to specific microRNAs (miRNAs) of interest based on keyword search faces major obstacles. References to miRNA names in the literature often deviate from standard nomenclature for various reasons, since even the official nomenclature evolves. For instance, a single miRNA name may identify two completely different molecules or two different names may refer to the same molecule. mirPub is a database with a powerful and intuitive interface which facilitates searching for miRNA literature, addressing the aforementioned issues. To provide effective search services, mirPub applies text mining techniques on MEDLINE, integrates data from several curated databases and exploits data from its user community following a crowdsourcing approach. Other key features include an interactive visualization service that illustrates intuitively the evolution of miRNA data, tag clouds summarizing the relevance of publications to particular diseases, cell types, or tissues, and access to TarBase 6.0 data to oversee genes related to miRNA publications. Availability and Implementation: mirPub is freely available at

Concepts: DNA, Gene, RNA, MicroRNA, Noun, Antagomir, Molecules, Tag


Because circulating microRNAs (miRNAs) have drawn a great deal of attention as promising novel cancer diagnostics and prognostic biomarkers, we sought to identify serum miRNAs significantly associated with outcome in glioblastoma patients. To do this, we performed global miRNA profiling in serum samples from 106 primary glioblastoma patients. The study subjects were randomly divided into two sets: set one (n = 40) and set two (n = 66). Using a Cox regression model, 3 serum miRNAs (miR-106a-5p, miR-182, and miR-145-5p) and 5 serum miRNAs (miR-222-3p, miR-182, miR-20a-5p, miR-106a-5p, and miR-145-5p) were identified significantly associated with 2-year patient overall survival and disease-free survival (P < 0.05) in both sets and the combined set. We then created the miRNA risk scores to assess the total impact of the significant serum miRNAs on survival. The high risk scores were associated with poor patient survival (overall survival: HR = 1.92, 95% CI: 1.19, 10.23, and disease-free survival: HR = 2.03, 95%CI: 1.24, 4.28), and were independent of other clinicopathological factors. Our results suggest that serum miRNAs could serve as prognostic predictors of glioblastoma.

Concepts: Regression analysis, Proportional hazards models, RNA, MicroRNA, Antagomir


Recent studies have revealed that patients with psychiatric disorders have altered microRNA (miRNA) expression profiles in the circulation and brain. Furthermore, animal studies have shown that manipulating the levels of particular miRNAs in the brain can alter behaviour. Here, we review recent studies in humans, animal models, cellular systems and bioinformatics that have advanced our understanding of the contribution of brain miRNAs to the regulation of behaviour in the context of psychiatric conditions. These studies highlight the potential of miRNA levels to be used in the diagnosis of psychiatric disorders and suggest that brain miRNAs could become novel treatment targets for psychiatric disorders.

Concepts: Psychology, Gene, RNA, MicroRNA, Messenger RNA, Mental disorder, Antagomir