SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Anopheles

486

Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda.

Concepts: DNA, Gene, Genetics, Allele, Malaria, Plasmodium, Anopheles, Mosquito

333

There is much evidence that some pathogens manipulate the behaviour of their mosquito hosts to enhance pathogen transmission. However, it is unknown whether this phenomenon exists in the interaction of Anopheles gambiae sensu stricto with the malaria parasite, Plasmodium falciparum - one of the most important interactions in the context of humanity, with malaria causing over 200 million human cases and over 770 thousand deaths each year. Here we demonstrate, for the first time, that infection with P. falciparum causes alterations in behavioural responses to host-derived olfactory stimuli in host-seeking female An. gambiae s.s. mosquitoes. In behavioural experiments we showed that P. falciparum-infected An. gambiae mosquitoes were significantly more attracted to human odors than uninfected mosquitoes. Both P. falciparum-infected and uninfected mosquitoes landed significantly more on a substrate emanating human skin odor compared to a clean substrate. However, significantly more infected mosquitoes landed and probed on a substrate emanating human skin odor than uninfected mosquitoes. This is the first demonstration of a change of An. gambiae behaviour in response to olfactory stimuli caused by infection with P. falciparum. The results of our study provide vital information that could be used to provide better predictions of how malaria is transmitted from human being to human being by An. gambiae s.s. females. Additionally, it highlights the urgent need to investigate this interaction further to determine the olfactory mechanisms that underlie the differential behavioural responses. In doing so, new attractive compounds could be identified which could be used to develop improved mosquito traps for surveillance or trapping programmes that may even specifically target P. falciparum-infected An. gambiae s.s. females.

Concepts: Immune system, Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Apicomplexa, Mosquito

265

Anopheles arabiensis is a dominant vector of malaria in sub-Saharan Africa, which feeds indoors and outdoors on human and other vertebrate hosts, making it a difficult species to control with existing control methods. Novel methods that reduce human-vector interactions are, therefore, required to improve the impact of vector control programmes. Investigating the mechanisms underlying the host discrimination process in An. arabiensis could provide valuable knowledge leading to the development of novel control technologies. In this study, a host census and blood meal analysis were conducted to determine the host selection behaviour of An. arabiensis. Since mosquitoes select and discriminate among hosts primarily using olfaction, the volatile headspace of the preferred non-human host and non-host species, were collected. Using combined gas chromatography and electroantennographic detection analysis followed by combined gas chromatography and mass spectrometry, the bioactive compounds in the headspace collections were identified. The efficiency of the identified non-host compounds to repel host-seeking malaria mosquitoes was tested under field conditions.

Concepts: Human, Malaria, Africa, Sub-Saharan Africa, Anopheles, Mosquito, Vector, Mosquito control

230

Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of “SNP heritability” for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals (N = 234; χ2, p = 0.007). Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer selection on host choice behavior within these vector populations; possibly in response to vector control. Controlled host-choice assays are needed to discern whether the observed genetic component has a direct relationship with innate host preference. A better understanding of the genetic basis for host feeding behavior in An. arabiensis may also open avenues for novel vector control strategies based on driving genes for zoophily into wild mosquito populations.

Concepts: Gene, Genetics, Malaria, Anopheles, Mosquito, Principal component analysis, Mosquito control, Anopheles gambiae

188

The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo and threatens the prospect of malaria elimination. However, little is known about the emergence of P. knowlesi, particularly in Sabah. We reviewed Sabah Department of Health records to investigate the trend of each malaria species over time.

Concepts: Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Apicomplexa, Malaysia, Plasmodium knowlesi

172

Resistance monitoring is essential in ensuring the success of insecticide based vector control programmes. This study was carried out to assess the susceptibility status of urban populations of Anopheles gambiae to carbamate insecticide being considered for vector control in mosquito populations previously reported to be resistant to DDT and permethrin.

Concepts: Malaria, Anopheles, Mosquito, Mosquito control, Insecticide, DDT, Pyrethroid, Carbamate

170

Natural insecticides against the vector mosquito Aedes aegypti have been the object of research due to their high level of eco-safety. The water-soluble Moringa oleifera lectin (WSMoL) is a larvicidal agent against A. aegypti. This work reports the effects of WSMoL on oviposition and egg hatching of A. aegypti.

Concepts: Anopheles, Mosquito, Yellow fever, Aedes aegypti, Aedes, Dengue fever, Culicidae, Moringa oleifera

170

Malaria causes more than 300 million clinical cases and 665,000 deaths each year, and the majority of the mortality and morbidity occurs in sub-Saharan Africa. Due to the lack of effective vaccines and wide-spread resistance to antimalarial drugs, mosquito control is the primary method of malaria prevention and control. Currently, malaria vector control relies on the use of insecticides, primarily pyrethroids. The extensive use of insecticides has imposed strong selection pressures for resistance in the mosquito populations. Consequently, resistance to pyrethroids in Anopheles gambiae, the main malaria vector in sub-Saharan Africa, has become a major obstacle for malaria control. A key element of resistance management is the identification of resistance mechanisms and subsequent development of reliable resistance monitoring tools. Field-derived An. gambiae from Western Kenya were phenotyped as deltamethrin-resistant or -susceptible by the standard WHO tube test, and their expression profile compared by RNA-seq. Based on the current annotation of the An. gambiae genome, a total of 1,093 transcripts were detected as significantly differentially accumulated between deltamethrin-resistant and -susceptible mosquitoes. These transcripts are distributed over the entire genome, with a large number mapping in QTLs previously linked to pyrethorid resistance, and correspond to heat-shock proteins, metabolic and transport functions, signal transduction activities, cytoskeleton and others. The detected differences in transcript accumulation levels between resistant and susceptible mosquitoes reflect transcripts directly or indirectly correlated with pyrethroid resistance. RNA-seq data also were used to perform a de-novo Cufflinks assembly of the An. gambiae genome.

Concepts: Malaria, Africa, Anopheles, Mosquito, Dengue fever, Malaria prophylaxis, Mosquito control, Anopheles gambiae

169

In areas of low malaria transmission, it is currently recommended that a single dose of primaquine (0.75 mg base/kg; 45 mg adult dose) be added to artemisinin combination treatment (ACT) in acute falciparum malaria to block malaria transmission. Review of studies of transmission-blocking activity based on the infectivity of patients or volunteers to anopheline mosquitoes, and of haemolytic toxicity in glucose 6-dehydrogenase (G6PD) deficient subjects, suggests that a lower primaquine dose (0.25 mg base/kg) would be safer and equally effective. This lower dose could be deployed together with ACTs without G6PD testing wherever use of a specific gametocytocide is indicated.

Concepts: Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Apicomplexa, Glucose-6-phosphate dehydrogenase deficiency, Artemisinin

168

BACKGROUND: Indonesia has set 2030 as its deadline for elimination of malaria transmission in the archipelago, with regional deadlines established according to present levels of malaria endemicity and strength of health infrastructure. The Municipality of Sabang which historically had one of the highest levels of malaria in Aceh province aims to achieve elimination by the end of 2013. METHOD: From 2008 to 2010, baseline surveys of malaria interventions, mapping of all confirmed malaria cases, categorization of residual foci of malaria transmission and vector surveys were conducted in Sabang, Aceh, a pilot district for malaria elimination in Indonesia. To inform future elimination efforts, mass screening from the focal areas to measure prevalence of malaria with both microscopy and PCR was conducted. G6PD deficiency prevalence was also measured.Result: Despite its small size, a diverse mixture of potential malaria vectors were documented in Sabang, including Anopheles sundaicus, Anopheles minimus, Anopheles aconitus and Anopheles dirus. Over a two-year span, the number of sub-villages with ongoing malaria transmission reduced from 61 to 43. Coverage of malaria diagnosis and treatment, IRS, and LLINs was over 80%. Screening of 16,229 residents detected 19 positive people, for a point prevalence of 0.12%. Of the 19 positive cases, three symptomatic infections and five asymptomatic infections were detected with microscopy and 11 asymptomatic infections were detected with PCR. Of the 19 cases, seven were infected with Plasmodium falciparum, 11 were infected with Plasmodium vivax, and one subject was infected with both species. Analysis of the 937 blood samples for G6PD deficiency revealed two subjects (0.2%) with deficient G6PD. DISCUSSION: The interventions carried out by the government of Sabang have dramatically reduced the burden of malaria over the past seven years. The first phase, carried out between 2005 and 2007, included improved malaria diagnosis, introduction of ACT for treatment, and scale-up of coverage of IRS and LLINs. The second phase, from 2008 to 2010, was initiated to eliminate the persist residual transmission of malaria, consisted of development of a malaria database to ensure rapid case reporting and investigation, stratification of malaria foci to guide interventions, and active case detection to hunt symptomatic and asymptomatic malaria carriers.

Concepts: Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Apicomplexa, Glucose-6-phosphate dehydrogenase deficiency, Aceh