SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Anise

160

Shikimic acid (SA) produced from the seeds of Chinese star anise (Illicium verum) is a key intermediate for the synthesis of neuraminidase inhibitors such as oseltamivir (Tamiflu®), an anti-influenza drug. However, plants cannot deliver a stable supply of SA. To avoid the resulting shortages and price fluctuations, a stable source of affordable SA is required. Although recent achievements in metabolic engineering of Escherichia coli strains have significantly increased SA productivity, commonly-used plasmid-based expression systems are prone to genetic instability and require constant selective pressure to ensure plasmid maintenance. Cofactors also play an important role in the biosynthesis of different fermentation products. In this study, we first constructed an E. coli SA production strain that carries no plasmid or antibiotic marker. We then investigated the effect of endogenous NADPH availability on SA production.

Concepts: Genetics, Bacteria, Escherichia coli, Anise, Japanese star anise, Star anise, Illicium, Shikimic acid

28

Anethole [1-methoxy-4-(1-propenyl)benzene] occurs naturally as a major component of the essential oil of star anise (Illicium verum Hook.f., family Illiciaceae), comprising more than 90 % of its volatile components. Studies showed that this substance has antioxidant, antibacterial, antifungal, and anesthetic properties. In this study, the anti-inflammatory properties of anethole in animal models of nonimmune acute inflammation such as croton oil-induced ear edema and carrageenan-induced pleurisy were investigated. The investigated parameters were edema formation, leukocyte migration, and inflammatory mediators involved. Oral administration of anethole at a dose of 250 and 500 mg/kg reduced both the volume of pleural exudates and the number of migrated leukocytes. Levels of nitric oxide (NO) and prostaglandins (PGE(2)) in the inflammatory exudate were reduced by treatment with anethole, but levels of tumor necrosis factor-α and interleukin-1β were not significantly altered. In ear edema, the oral treatment with anethole inhibited the formation of exudate and the activity of myeloperoxidase, but not after topical administration. These results suggest that the anethole may be effective in controlling some nonimmune acute inflammation-related disease, probably by an inhibitory action on production and/or release of PGE(2) and NO.

Concepts: Immune system, Inflammation, Anti-inflammatory, Anise, Star anise, Anethole, Illicium, Austrobaileyales

28

Mosquitoes constitute a severe health problem in many areas all over the world. There are many regions of the tropics and subtropics where mosquitoes are one of the main reasons for inhibiting the economic upgrade. Except nuisance, their medical importance is another matter of attention since mosquitoes are vectors for a wide variety of vector-borne diseases. Due to disadvantages of currently used chemical control methods, it is unavoidable to search for eco-friendly new molecules. We report herein the evaluation of the larvicidal effect exhibited by essential oils of Dianthus caryophyllus, Lepidium sativum, Pimpinella anisum, and Illicium verum against late third to early fourth instar mosquito larvae of Culex pipiens. Furthermore, phytochemical analysis of plant samples revealed their major compounds to be β-caryophyllene, eugenol, eucalyptol, α-terpinyl acetate, and (E)-anethole which were also tested for their potential larvicidal activity. For D. caryophyllus and L. sativum, this was the first report on the chemical composition of their essential oils. The essential oils of I. verum and P. anisum demonstrated high larvicidal activity with a LC(50) <18 mgL(-1). The other two essential oils of D. caryophyllus and L. sativum revealed moderate larvicidal activity, displaying a LC(50) value above 50 mgL(-1). Among the pure components, the most toxic were eugenol, (E)-anethole, and α-terpinyl acetate, with LC(50) values 18.28, 16.56, and 23.03 mgL(-1), respectively. Eucalyptol (1,8 cineole) and β-caryophyllene were inactive at concentrations even as high as 100 mgL(-1), showing the least significant activity against mosquito larvae. Results allow some rationalization on the relative importance of the major compounds regarding the larvicidal activity of selected essential oils and their potential use as vector control agents.

Concepts: Mosquito, Culicidae, Mosquito control, Essential oil, Nonanal, Anise, Japanese star anise, Star anise

27

A new, practical, rapid, and high-yielding process for the pressurized hot water extraction (PHWE) of multigram quantities of shikimic acid from star anise (Illicium verum) using an unmodified household espresso machine has been developed. This operationally simple and inexpensive method enables the efficient and straightforward isolation of shikimic acid and the facile preparation of a range of its synthetic derivatives.

Concepts: Absinthe, Anise, Japanese star anise, Star anise, Anethole, Illicium, Austrobaileyales, Shikimic acid

0

The Apiaceae family encompasses aromatic plants of economic importance employed in foodstuffs, beverages, perfumery, pharmaceuticals and cosmetics. Apiaceae are rich sources of essential oils because of the wealth of secretory structures (ducts and vittae) they are endowed with. The Apiaceae essential oils are available on an industrial level because of the wide cultivation and disposability of the bulky material from which they are extracted as well as their relatively cheap price. In the fight against protozoal infections, essential oils may represent new therapeutic options. In the present work, we focused on a panel of nine Apiaceae species (Siler montanum, Sison amomum, Echinophora spinosa, Kundmannia sicula, Crithmum maritimum, Helosciadium nodiflorum, Pimpinella anisum, Heracleum sphondylium and Trachyspermum ammi) and their essential oils as a model for the identification of trypanocidal compounds to be used as alternative/integrative therapies in the treatment of Human African trypanosomiasis (HAT) and as starting material for drug design. The evaluation of inhibitory effects of the Apiaceae essential oils against Trypanosoma brucei showed that some of them (E. spinosa, S. amomum, C. maritimum and H. nodiflorum) were active, with EC50in the range 2.7-10.7 μg/mL. Most of these oils were selective against T. brucei, except the one from C. maritimum that was highly selective against the BALB/3T3 mammalian cells. Testing nine characteristic individual components (α-pinene, sabinene, α-phellandrene, p-cymene, limonene, β-ocimene, γ-terpinene, terpinolene, and myristicin) of these oils, we showed that some of them had much higher selectivity than the oils themselves. Terpinolene was particularly active with an EC50value of 0.035 μg/mL (0.26 µM) and a selectivity index (SI) of 180. Four other compounds with EC50in the range 1.0-6.0 μg/mL (7.4-44 µM) had also good SI: α-pinene (>100), β-ocimene (>91), limonene (>18) and sabinene (>17). In conclusion, these results highlight that the essential oils from the Apiaceae family are a reservoir of substances to be used as leading compounds for the development of natural drugs for the treatment of HAT.

Concepts: Trypanosoma brucei, African trypanosomiasis, Trypanosoma, Euglenozoa, Apiaceae, Essential oil, Tsetse fly, Anise

0

Antimicrobial and antioxidant effects of essential oils (oregano, thyme, and star anise) on microbial composition and quality of grass carp fillets were investigated. Essential oils treatment was found to be effective in inhibiting microbial growth, delaying lipid oxidation, and retarding the increase of TVB-N, putrescine, hypoxanthine, and K-value. Based on sensory analysis, shelf-life of grass carp fillets was 6days for control and 8days for treatment groups. Among the essential oils, oregano essential oil exhibited the highest antimicrobial and antioxidant activities. GC-MS analysis of essential oils components revealed that carvacrol (88.64%) was the major component of oregano essential oil. According to the results of high-throughput sequencing, Aeromonas, Glutamicibacter, and Aequorivita were the predominant microbiota in fresh control samples. However, oregano essential oil decreased the relative abundance of Aeromonas, while thyme and star anise essential oils decreased the relative abundance of Glutamicibacter and Aequorivita in fresh treated samples. The microbial composition of both control and treatment groups became less diverse as storage time increased. Aeromonas and Pseudomonas were dominant in spoiled samples and contributed to fish spoilage. Compared to the control, essential oils effectively inhibited the growth of Aeromonas and Shewanella in grass carp fillets during chilled storage.

Concepts: Bacteria, Antioxidant, Carbon, Cinnamon, Essential oil, Oil, Oils, Anise

0

Aphids are an important agricultural pest that not only damage plants by suction, but can also transmit a number of economically important plant viruses. Protection against aphids is based on the use of synthetic insecticides. However, these products can be dangerous for non-target organisms. Therefore, it is important to develop new, environmentally safe plant protection methods.In this study, we have tested an essential oil (EO) obtained from Foeniculum vulgare for the mortality of Myzus persicae, an important polyphagous pest, its natural predator Harmonia axyridis, and Eisenia fetida as a representative of soil organisms. The EO, with its major compounds trans-anethole (67.9%) and fenchone (25.5%), was found to provide excellent efficacy against M. persicae (LC50 = 0.6 and LC90 = 2.4 mL L-1) while not causing any significant mortality of the tested non-target organisms. On the contrary, application of an insecticide based on the active substance alpha-cypermethrin not only caused mortality in the aphids, but also had a fatal negative effect on both the non-target organisms we tested, resulting in their high mortality.Our results indicate very high prospects for using the essential oil from F. vulgare in the development of environmentally safe botanical insecticides designed for plant protection against aphids.

Concepts: Virus, Plant, Hemiptera, Essential oil, Oil, Aphididae, Anise, Anethole

0

In this study, biological properties of the essential oil isolated from seeds of Foeniculum vulgare (F. vulgare) were evaluated. GC-MS analysis revealed Trans-Anethole (80.63%), L-Fenchone (11.57%), Estragole (3.67%) and Limonene (2.68%) were the major compounds of the essential oil. Antibacterial activity of the essential oil against nine Gram-positive and Gram-negative strains was studied using disc diffusion and micro-well dilution assays. Essential oil exhibited the antibacterial activity against three Gram-negative strains of Pseudomonas aeruginosa, Escherichia coli, and Shigella dysenteriae. The preliminary study on toxicity of seed oil was performed using Brine Shrimp lethality test (BSLT). Results indicated the high toxicity effect of essential oil (LC50 = 10 μg/mL). In vitro anticancer activity of seed oil was investigated against human breast cancer (MDA-Mb) and cervical epithelioid carcinoma (Hela) cell lines by MTT assay. Results showed the seed oil behave as a very potent anticancer agent with IC50 of lower than 10 μg/mL in both cases.

Concepts: Cancer, Bacteria, Microbiology, Escherichia coli, Gram negative bacteria, Anise, Fennel, Anethole

0

Edible films (EFs) have gained great interest due to their ability to keep foods safe, maintaining their physical and organoleptic properties for a longer time. The aim of this work was to develop EFs based on a chitosan-zein mixture with three different essential oils (EOs) added: anise, orange, and cinnamon, and to characterize them to establish the relationship between their structural and physical properties. The addition of an EO into an EF significantly affected (p < 0.05) the a* (redness/greenness) and b* (yellowness/blueness) values of the film surface. The EFs presented a refractive index between 1.35 and 1.55, and thus are classified as transparent. The physical properties of EFs with an added EO were improved, and films that incorporated the anise EO showed significantly lower water vapor permeability (1.2 ± 0.1 g mm h(-1) m(-2) kPa(-1)) and high hardness (104.3 ± 3.22 MPa). EFs with an added EO were able to inhibit the growth of Penicillium sp. and Rhizopus sp. to a larger extent than without an EO. Films' structural changes were the result of chemical interactions among amino acid side chains from zein, glucosamine from chitosan, and cinnamaldehyde, anethole, or limonene from the EOs as detected by a Raman analysis. The incorporation of an EO in the EFs' formulation could represent an alternative use as coatings to enhance the shelf life of food products.

Concepts: Amino acid, Amine, Nutrition, Water, Food, Cinnamon, Essential oil, Anise

0

The essential oil of fennel (Foeniculum vulgare) is rich in lipophilic secondary metabolites, which can easily cross cell membranes by free diffusion. Several constituents of the oil carry reactive carbonyl groups in their ring structures. Carbonyl groups can react with amino groups of amino acid residues in proteins or in nucleotides of DNA to form Schiff’s bases. Fennel essential oil is rich in anise aldehyde, which should interfere with molecular targets in cells. The aim of the present study was to investigate the chemical composition of the essential oil of fennel growing in Tajikistan. Gas chromatographic-mass spectrometric analysis revealed that the main components of F. vulgare oil were trans-anethole (36.8%); α-ethyl-p-methoxy-benzyl alcohol (9.1%); p-anisaldehyde (7.7%); carvone (4.9%); 1-phenyl-penta-2,4-diyne (4.8%) and fenchyl butanoate (4.2%). The oil exhibited moderate antioxidant activities. The potential cytotoxic activity was studied against HeLa (human cervical cancer), Caco-2 (human colorectal adenocarcinoma), MCF-7 (human breast adenocarcinoma), CCRF-CEM (human T lymphoblast leukaemia) and CEM/ADR5000 (adriamycin resistant leukaemia) cancer cell lines; IC50 values were between 30-210 mg L(-1) and thus exhibited low cytotoxicity as compared to cytotoxic reference compounds.

Concepts: Cell, Cancer, Amino acid, Metabolism, Apiaceae, Anise, Fennel, Anethole