Discover the most talked about and latest scientific content & concepts.

Concept: Animals


We have investigated how birds avoid mid-air collisions during head-on encounters. Trajectories of birds flying towards each other in a tunnel were recorded using high speed video cameras. Analysis and modelling of the data suggest two simple strategies for collision avoidance: (a) each bird veers to its right and (b) each bird changes its altitude relative to the other bird according to a preset preference. Both strategies suggest simple rules by which collisions can be avoided in head-on encounters by two agents, be they animals or machines. The findings are potentially applicable to the design of guidance algorithms for automated collision avoidance on aircraft.

Concepts: Animal, Bird, Introductory physics, Projectile, Camera, Parrot, Animals, Traffic Collision Avoidance System


Flying animals need to accurately detect, identify and track fast-moving objects and these behavioral requirements are likely to strongly select for abilities to resolve visual detail in time. However, evidence of highly elevated temporal acuity relative to non-flying animals has so far been confined to insects while it has been missing in birds. With behavioral experiments on three wild passerine species, blue tits, collared and pied flycatchers, we demonstrate temporal acuities of vision far exceeding predictions based on the sizes and metabolic rates of these birds. This implies a history of strong natural selection on temporal resolution. These birds can resolve alternating light-dark cycles at up to 145 Hz (average: 129, 127 and 137, respectively), which is ca. 50 Hz over the highest frequency shown in any other vertebrate. We argue that rapid vision should confer a selective advantage in many bird species that are ecologically similar to the three species examined in our study. Thus, rapid vision may be a more typical avian trait than the famously sharp vision found in birds of prey.

Concepts: Natural selection, Conservation biology, Evolution, Animal, Bird, Vertebrate, Selection, Animals


The oceans at the start of the Neoproterozoic Era (1,000-541 million years ago, Ma) were dominantly anoxic, but may have become progressively oxygenated, coincident with the rise of animal life. However, the control that oxygen exerted on the development of early animal ecosystems remains unclear, as previous research has focussed on the identification of fully anoxic or oxic conditions, rather than intermediate redox levels. Here we report anomalous cerium enrichments preserved in carbonate rocks across bathymetric basin transects from nine localities of the Nama Group, Namibia (∼550-541 Ma). In combination with Fe-based redox proxies, these data suggest that low-oxygen conditions occurred in a narrow zone between well-oxygenated surface waters and fully anoxic deep waters. Although abundant in well-oxygenated environments, early skeletal animals did not occupy oxygen impoverished regions of the shelf, demonstrating that oxygen availability (probably >10 μM) was a key requirement for the development of early animal-based ecosystems.

Concepts: Photosynthesis, Carbon dioxide, Water, Oxidizing agent, Animal, Sedimentary rock, Carbon, Animals


Platyzoa is a putative lophotrochozoan (spiralian) subtaxon within the protostome clade of Metazoa, comprising a range of biologically diverse, mostly small worm-shaped animals. The monophyly of Platyzoa, the relationships between the putative subgroups Platyhelminthes, Gastrotricha and Gnathifera (the latter comprising at least Gnathostomulida, “Rotifera” and Acanthocephala) as well as some aspects of the internal phylogenies of these subgroups are highly debated. Here we review how complete mitochondrial (mt) genome data contribute to these debates. We highlight special features of the mt genomes and discuss problems in mtDNA phylogenies of the clade. Mitochondrial genome data seem to be insufficient to resolve the position of the platyzoan clade within the Spiralia but can be helpful in addressing internal phylogenetic questions. The present review includes a tabular survey of all published platyzoan mt genomes.

Concepts: DNA, Organism, Animal, Phylogenetics, Bilateria, Acanthocephala, Animals, Platyzoa


Trichoplax adhaerens is a flat, millimeter-sized marine animal that adheres to surfaces and grazes on algae. Trichoplax displays a repertoire of different feeding behaviors despite the apparent absence of a true nervous system with electrical or chemical synapses. It glides along surfaces to find food, propelled by beating cilia on cells at its ventral surface, and pauses during feeding by arresting ciliary beating. We found that when endomorphin-like peptides are applied to an animal, ciliary beating is arrested, mimicking natural feeding pauses. Antibodies against these neuropeptides label cells that express the neurosecretory proteins and voltage-gated calcium channels implicated in regulated secretion. These cells are embedded in the ventral epithelium, where they comprise only 4% of the total, and are concentrated around the edge of the animal. Each bears a cilium likely to be chemosensory and used to detect algae. Trichoplax pausing during feeding or spontaneously in the absence of food often induce their neighbors to pause as well, even neighbors not in direct contact. Pausing behavior propagates from animal to animal across distances much greater than the signal that diffuses from just one animal, so we presume that the peptides secreted from one animal elicit secretion from nearby animals. Signal amplification by peptide-induced peptide secretion explains how a small number of sensory secretory cells lacking processes and synapses can evoke a wave of peptide secretion across the entire animal to globally arrest ciliary beating and allow pausing during feeding.

Concepts: Protein, Neuron, Cell, Eukaryote, Synapse, Antenna, Arrest, Animals


Complex social life requires individuals to recognize and remember group members and, within those, to distinguish affiliates from nonaffiliates. Whereas long-term individual recognition has been demonstrated in some nonhuman animals, memory for the relationship valence to former group members has received little attention. Here we show that adult, pair-housed ravens not only respond differently to the playback of calls from previous group members and unfamiliar conspecifics but also discriminate between familiar birds according to the relationship valence they had to those subjects up to three years ago as subadult nonbreeders. The birds' distinction between familiar and unfamiliar individuals is reflected mainly in the number of calls, whereas their differentiation according to relationship valence is reflected in call modulation only. As compared to their response to affiliates, ravens responded to nonaffiliates by increasing chaotic parts of the vocalization and lowering formant spacing, potentially exaggerating the perceived impression of body size. Our findings indicate that ravens remember relationship qualities to former group members even after long periods of separation, confirming that their sophisticated social knowledge as nonbreeders is maintained into the territorial breeding stage.

Concepts: Psychology, Function, Animal, Bird, Knowledge, Individual, Social psychology, Animals


It is a golden age for animal movement studies and so an opportune time to assess priorities for future work. We assembled 40 experts to identify key questions in this field, focussing on marine megafauna, which include a broad range of birds, mammals, reptiles, and fish. Research on these taxa has both underpinned many of the recent technical developments and led to fundamental discoveries in the field. We show that the questions have broad applicability to other taxa, including terrestrial animals, flying insects, and swimming invertebrates, and, as such, this exercise provides a useful roadmap for targeted deployments and data syntheses that should advance the field of movement ecology.

Concepts: Insect, Animal, Bird, Reptile, Mammal, Vertebrate, Chordate, Animals


Trichoplax adhaerens has only six cell types. The function as well as the structure of crystal cells, the least numerous cell type, presented an enigma. Crystal cells are arrayed around the perimeter of the animal and each contains a birefringent crystal. Crystal cells resemble lithocytes in other animals so we looked for evidence they are gravity sensors. Confocal microscopy showed that their cup-shaped nuclei are oriented toward the edge of the animal, and that the crystal shifts downward under the influence of gravity. Some animals spontaneously lack crystal cells and these animals behaved differently upon being tilted vertically than animals with a typical number of crystal cells. EM revealed crystal cell contacts with fiber cells and epithelial cells but these contacts lacked features of synapses. EM spectroscopic analyses showed that crystals consist of the aragonite form of calcium carbonate. We thus provide behavioral evidence that Trichoplax are able to sense gravity, and that crystal cells are likely to be their gravity receptors. Moreover, because placozoans are thought to have evolved during Ediacaran or Cryogenian eras associated with aragonite seas, and their crystals are made of aragonite, they may have acquired gravity sensors during this early era.

Concepts: Archaea, Organism, Cell type, Calcium carbonate, Aragonite, Animals, Parazoa, Trichoplax


The enigmatic animal phylum Placozoa holds a key position in the metazoan Tree of Life. A simple bauplan makes it appear to be the most basal metazoan known and genetic evidence also points to a position close to the last common metazoan ancestor. Trichoplax adhaerens is the only formally described species in the phylum to date, making the Placozoa the only monotypic phylum in the animal kingdom. However, recent molecular genetic as well as morphological studies have identified a high level of diversity, and hence a potential high level of taxonomic diversity, within this phylum. Different taxa, possibly at different taxonomic levels, are awaiting description. In this review we firstly summarize knowledge on the morphology, phylogenetic position and ecology of the Placozoa. Secondly, we give an overview of placozoan morphological and genetic diversity and finally present an updated distribution of placozoan populations. We conclude that there is great potential and need to erect new taxa and to establish a firm system for this taxonomic tabula rasa.

Concepts: Organism, Cladistics, Cnidaria, Ctenophora, Taxonomic rank, Kingdom, Animals, Parazoa


This study aimed to characterize the sociodemographic profile of animal hoarders in a southern city of Brazil. In addition, it aimed to propose Animal Hoarding Disorder as a new nosological category, distinct from Hoarding Disorder. Thirty-three individuals with Animal Hoarding Disorder, 73% female and 60% elderly, composed the sample. The average age of the sample was 61.39 years (SD = 12.69) and the average period that individuals hoarded or lived with a large number of animals was 23.09 years (SD = 15.98.) It was observed that 56.7% of the sample hoarded other inanimate objects, besides the animals. The total number of hoarded animals was 1.357 and the average number of animals per hoarder was approximately 41 (SD = 24.41). Significant differences between hoarding disorder and animal hoarding are discussed. Unlike hoarded objects, hoarded animals generally do not obstruct domicile environments. The processes of disengaging from or donating animals also differ from those of object hoarding, since there is an affectional bond with lives and not with unanimated objects. In this sense, the characterization of Animal Hoarding Disorder as a new mental disorder may arouse great interest from both clinical professionals and researchers.

Concepts: The Animals, Compulsive hoarding, Don't Let Me Be Misunderstood, Eric Burdon, Animals, Alan Price, We Gotta Get out of This Place, Animal hoarding