Discover the most talked about and latest scientific content & concepts.

Concept: Animal testing


A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R(2) between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases.

Concepts: Medicine, Model organism, Animal testing, Drug discovery, Model, Medical research, Orphan drug


The broad-spectrum herbicide glyphosate (common trade name “Roundup”) was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization’s International Agency for Research on Cancer recently concluded that glyphosate is “probably carcinogenic to humans.” In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National Toxicology Program, as well as for biomonitoring as conducted by the U.S. Centers for Disease Control and Prevention.

Concepts: Epidemiology, Agriculture, Animal testing, Toxicology, Carcinogen, Herbicide, Glyphosate, Roundup


Zinc-finger nucleases (ZFNs) and TAL effector nucleases (TALENs) have been shown to induce targeted mutations, but they have not been extensively tested in any animal model. Here, we describe a large-scale comparison of ZFN and TALEN mutagenicity in zebrafish. Using deep sequencing, we found that TALENs are significantly more likely to be mutagenic and induce an average of 10-fold more mutations than ZFNs. We observed a strong correlation between somatic and germ-line mutagenicity, and identified germ line mutations using ZFNs whose somatic mutations rates are well below the commonly used threshold of 1%. Guidelines that have previously been proposed to predict optimal ZFN and TALEN target sites did not predict mutagenicity in vivo. However, we observed a significant negative correlation between TALEN mutagenicity and the number of CpG repeats in TALEN target sites, suggesting that target site methylation may explain the poor mutagenicity of some TALENs in vivo. The higher mutation rates and ability to target essentially any sequence make TALENs the superior technology for targeted mutagenesis in zebrafish, and likely other animal models.

Concepts: DNA, Mutation, DNA repair, Model organism, Animal testing, Site-directed mutagenesis, Mutagenesis, Mutagen


Based on the soil-to-seeds principle, we explored the small-molecular sequential dual-targeting theranostic strategy (SMSDTTS) for prolonged survival and imaging detectability in a xenograft tumor model.

Concepts: Animal testing, Severe combined immunodeficiency, Combretastatin A-4, Combretastatin A-4 phosphate, Xenotransplantation, Combretastatin


Given the hazardous nature of many materials and substances, ocular toxicity testing is required to evaluate the dangers associated with these substances after their exposure to the eye. Historically, animal tests such as the Draize test were exclusively used to determine the level of ocular toxicity by applying a test substance to a live rabbit’s eye and evaluating the biological response. In recent years, legislation in many developed countries has been introduced to try to reduce animal testing and promote alternative techniques. These techniques include ex vivo tests on deceased animal tissue, computational models that use algorithms to apply existing data to new chemicals and in vitro assays based on two dimensional (2D) and three dimensional (3D) cell culture models. Here we provide a comprehensive overview of the latest advances in ocular toxicity testing techniques, and discuss the regulatory framework used to evaluate their suitability.

Concepts: Biology, Animal testing, In vivo, Dimension, In vitro, Animal rights, Draize test, Huntingdon Life Sciences


Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer’s disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to investigate the effect of LPA receptor activation on the cholinergic system in vitro and in vivo using wild-type and AD animal models. Gintonin induced [Ca2+]i transient in cultured mouse hippocampal neural progenitor cells (NPCs). Gintonin-mediated [Ca2+]i transients were linked to stimulation of acetylcholine release through LPA receptor activation. Oral administration of gintonin-enriched fraction (25, 50, or 100 mg/kg, 3 weeks) significantly attenuated scopolamine-induced memory impairment. Oral administration of gintonin (25 or 50 mg/kg, 2 weeks) also significantly attenuated amyloid-β protein (Aβ)-induced cholinergic dysfunctions, such as decreased acetylcholine concentration, decreased choline acetyltransferase (ChAT) activity and immunoreactivity, and increased acetylcholine esterase (AChE) activity. In a transgenic AD mouse model, long-term oral administration of gintonin (25 or 50 mg/kg, 3 months) also attenuated ADrelated cholinergic impairments. In this study, we showed that activation of G protein-coupled LPA receptors by gintonin is coupled to the regulation of cholinergic functions. Furthermore, this study showed that gintonin could be a novel agent for the restoration of cholinergic system damages due to Aβ and could be utilized for AD prevention or therapy.

Concepts: Alzheimer's disease, Brain, Animal testing, Receptor, Progenitor cell, In vivo, Acetylcholine, Ligand-gated ion channel


Despite advances to targeted leishmanicidal chemotherapy, defies around severe toxicity, recent emergence of resistant variants and absence of rational vaccine still persist. This necessitates search and/or progressive validation of accessible medicinal remedies including plant based. The study examined both in vivo and in vitro response of L. major infection to combined therapy of Ricinus communis and Azadirachta indica extracts in BALB/c mice as the mouse model. A comparative study design was applied.

Concepts: Immune system, Animal testing, In vivo, In vitro, Rat, Rodent, Mouse, Mice


Gastroenterologists are still unable to differentiate between some of the most ordinary disorders of the gut and consequently patients are misdiagnosed. We have developed a swallowable gas sensor capsule for addressing this. The gases of the gut are the by-product of the fermentation processes during digestion, affected by the gut state and can consequently provide the needed information regarding the health of the gut. Here we present the first study on gas sensor capsules for revealing the effect of a medical supplement in an animal (pig) model. We characterise the real-time alterations of gastric-gas in response to environmental heat-stress and dietary cinnamon and use the gas profiles for understanding the bio-physiological changes. Under no heat-stress, feeding increases gastric CO2 concentration, while dietary cinnamon reduces it due to decrease in gastric acid and pepsin secretion. Alternatively, heat-stress leads to hyperventilation in pigs, which reduces CO2 concentration and with the cinnamon treatment, CO2 diminishes even more, resulting in health improvement outcomes. Overall, a good repeatability in gas profiles is also observed. The model demonstrates the strong potential of real-time gas profiler in providing new physiological information that will impact understanding of therapeutics, presenting a highly reliable device for monitoring/diagnostics of gastrointestinal disorders.

Concepts: Carbon dioxide, Acid, Animal testing, Stomach, Gas, Digestion, Natural gas, Gastric acid


Reproducibility in animal research is alarmingly low, and a lack of scientific rigor has been proposed as a major cause. Systematic reviews found low reporting rates of measures against risks of bias (e.g., randomization, blinding), and a correlation between low reporting rates and overstated treatment effects. Reporting rates of measures against bias are thus used as a proxy measure for scientific rigor, and reporting guidelines (e.g., ARRIVE) have become a major weapon in the fight against risks of bias in animal research. Surprisingly, animal scientists have never been asked about their use of measures against risks of bias and how they report these in publications. Whether poor reporting reflects poor use of such measures, and whether reporting guidelines may effectively reduce risks of bias has therefore remained elusive. To address these questions, we asked in vivo researchers about their use and reporting of measures against risks of bias and examined how self-reports relate to reporting rates obtained through systematic reviews. An online survey was sent out to all registered in vivo researchers in Switzerland (N = 1891) and was complemented by personal interviews with five representative in vivo researchers to facilitate interpretation of the survey results. Return rate was 28% (N = 530), of which 302 participants (16%) returned fully completed questionnaires that were used for further analysis. According to the researchers' self-report, they use measures against risks of bias to a much greater extent than suggested by reporting rates obtained through systematic reviews. However, the researchers' self-reports are likely biased to some extent. Thus, although they claimed to be reporting measures against risks of bias at much lower rates than they claimed to be using these measures, the self-reported reporting rates were considerably higher than reporting rates found by systematic reviews. Furthermore, participants performed rather poorly when asked to choose effective over ineffective measures against six different biases. Our results further indicate that knowledge of the ARRIVE guidelines had a positive effect on scientific rigor. However, the ARRIVE guidelines were known by less than half of the participants (43.7%); and among those whose latest paper was published in a journal that had endorsed the ARRIVE guidelines, more than half (51%) had never heard of these guidelines. Our results suggest that whereas reporting rates may underestimate the true use of measures against risks of bias, self-reports may overestimate it. To a large extent, this discrepancy can be explained by the researchers' ignorance and lack of knowledge of risks of bias and measures to prevent them. Our analysis thus adds significant new evidence to the assessment of research integrity in animal research. Our findings further question the confidence that the authorities have in scientific rigor, which is taken for granted in the harm-benefit analyses on which approval of animal experiments is based. Furthermore, they suggest that better education on scientific integrity and good research practice is needed. However, they also question reliance on reporting rates as indicators of scientific rigor and highlight a need for more reliable predictors.

Concepts: Scientific method, Critical thinking, Animal testing, In vivo, Science, Research, Bias


Naked mole-rats (NMRs; Heterocephalus glaber) are highly adapted, eusocial rodents renowned for their extreme longevity and resistance to cancer. Because cancer has not been formally described in this species, NMRs have been increasingly utilized as an animal model in aging and cancer research. We previously reported the occurrence of several age-related diseases, including putative pre-neoplastic lesions, in zoo-housed NMR colonies. Here, we report for the first time 2 cases of cancer in zoo-housed NMRs. In Case No. 1, we observed a subcutaneous mass in the axillary region of a 22-year-old male NMR, with histologic, immunohistochemical (pancytokeratin positive, rare p63 immunolabeling, and smooth muscle actin negative), and ultrastructural characteristics of an adenocarcinoma possibly of mammary or salivary origin. In Case No. 2, we observed a densely cellular, poorly demarcated gastric mass of polygonal cells arranged in nests with positive immunolabeling for synaptophysin and chromogranin indicative of a neuroendocrine carcinoma in an approximately 20-year-old male NMR. We also include a brief discussion of other proliferative growths and pre-cancerous lesions diagnosed in 1 zoo colony. Although these case reports do not alter the longstanding observation of cancer resistance, they do raise questions about the scope of cancer resistance and the interpretation of biomedical studies in this model. These reports also highlight the benefit of long-term disease investigations in zoo-housed populations to better understand naturally occurring disease processes in species used as models in biomedical research.

Concepts: Cancer, Disease, Animal testing, Anatomical pathology, Actin, Mammal, Smooth muscle, Naked mole rat