Discover the most talked about and latest scientific content & concepts.

Concept: Animal locomotion


The two major modes of locomotion in humans, walking and running, may be regarded as a function of different speed (walking as slower and running as faster). Recent results using motor learning tasks in humans, as well as more direct evidence from animal models, advocate for independence in the neural control mechanisms underlying different locomotion tasks. In the current study, we investigated the possible independence of the neural mechanisms underlying human walking and running. Subjects were tested on a split-belt treadmill and adapted to walking or running on an asymmetrically driven treadmill surface. Despite the acquisition of asymmetrical movement patterns in the respective modes, the emergence of asymmetrical movement patterns in the subsequent trials was evident only within the same modes (walking after learning to walk and running after learning to run) and only partial in the opposite modes (walking after learning to run and running after learning to walk) (thus transferred only limitedly across the modes). Further, the storage of the acquired movement pattern in each mode was maintained independently of the opposite mode. Combined, these results provide indirect evidence for independence in the neural control mechanisms underlying the two locomotive modes.

Concepts: Transport, Running, Walking, Locomotion, Circumstantial evidence, Treadmill, Animal locomotion, Human skills


Human locomotion through natural environments requires precise coordination between the biomechanics of the bipedal gait cycle and the eye movements that gather the information needed to guide foot placement. However, little is known about how the visual and locomotor systems work together to support movement through the world. We developed a system to simultaneously record gaze and full-body kinematics during locomotion over different outdoor terrains. We found that not only do walkers tune their gaze behavior to the specific information needed to traverse paths of varying complexity but that they do so while maintaining a constant temporal look-ahead window across all terrains. This strategy allows walkers to use gaze to tailor their energetically optimal preferred gait cycle to the upcoming path in order to balance between the drive to move efficiently and the need to place the feet in stable locations. Eye movements and locomotion are intimately linked in a way that reflects the integration of energetic costs, environmental uncertainty, and momentary informational demands of the locomotor task. Thus, the relationship between gaze and gait reveals the structure of the sensorimotor decisions that support successful performance in the face of the varying demands of the natural world. VIDEO ABSTRACT.

Concepts: Natural environment, Nature, Running, Walking, Topography, Locomotion, Animal locomotion, Gait analysis


How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF), the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete ‘walking’ and ‘running’ gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79-93% of the observed variation in kinematics and 69-83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation.

Concepts: Bird, Classical mechanics, Kinematics, Reaction, Locomotion, Animal locomotion, Dinosaur, Theropoda


To cope with the exceptional computational complexity that is involved in the control of its hyper-redundant arms [1], the octopus has adopted unique motor control strategies in which the central brain activates rather autonomous motor programs in the elaborated peripheral nervous system of the arms [2, 3]. How octopuses coordinate their eight long and flexible arms in locomotion is still unknown. Here, we present the first detailed kinematic analysis of octopus arm coordination in crawling. The results are surprising in several respects: (1) despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation; (2) body and crawling orientation are monotonically and independently controlled; and (3) contrasting known animal locomotion, octopus crawling lacks any apparent rhythmical patterns in limb coordination, suggesting a unique non-rhythmical output of the octopus central controller. We show that this uncommon maneuverability is derived from the radial symmetry of the arms around the body and the simple pushing-by-elongation mechanism by which the arms create the crawling thrust. These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction. Our findings suggest that the soft molluscan body has affected in an embodied way [4, 5] the emergence of the adaptive motor behavior of the octopus.

Concepts: Central nervous system, Nervous system, Brain, Motor control, Mollusca, Computational complexity theory, Animal locomotion, Octopus


Three-dimensional analysis of the entire sequence in ski jumping is recommended when studying the kinematics or evaluating performance. Camera-based systems which allow three-dimensional kinematics measurement are complex to set-up and require extensive post-processing, usually limiting ski jumping analyses to small numbers of jumps. In this study, a simple method using a wearable inertial sensors-based system is described to measure the orientation of the lower-body segments (sacrum, thighs, shanks) and skis during the entire jump sequence. This new method combines the fusion of inertial signals and biomechanical constraints of ski jumping. Its performance was evaluated in terms of validity and sensitivity to different performances based on 22 athletes monitored during daily training. The validity of the method was assessed by comparing the inclination of the ski and the slope at landing point and reported an error of -0.2±4.8°. The validity was also assessed by comparison of characteristic angles obtained with the proposed system and reference values in the literature; the differences were smaller than 6° for 75% of the angles and smaller than 15° for 90% of the angles. The sensitivity to different performances was evaluated by comparing the angles between two groups of athletes with different jump lengths and by assessing the association between angles and jump lengths. The differences of technique observed between athletes and the associations with jumps length agreed with the literature. In conclusion, these results suggest that this system is a promising tool for a generalization of three-dimensional kinematics analysis in ski jumping.

Concepts: Measurement, Mathematical analysis, Skiing, Finland, Animal locomotion, Jump, Ski jumping, Ski jumping at the Winter Olympics


Salamanders have captured the interest of biologists and roboticists for decades because of their ability to locomote in different environments and their resemblance to early representatives of tetrapods. In this article, we review biological and robotic studies on the kinematics (i.e., angular profiles of joints) of salamander locomotion aiming at three main goals: (i) to give a clear view of the kinematics, currently available, for each body part of the salamander while moving in different environments (i.e., terrestrial stepping, aquatic stepping, and swimming), (ii) to examine what is the status of our current knowledge and what remains unclear, and (iii) to discuss how much robotics and modeling have already contributed and will potentially contribute in the future to such studies.

Concepts: Tetrapod, Robotics, Amphibian, Frog, Lissamphibia, Animal locomotion, Salamander, Inverse kinematics


Small aerial robots are limited to short mission times because aerodynamic and energy conversion efficiency diminish with scale. One way to extend mission times is to perch, as biological flyers do. Beyond perching, small robot flyers benefit from manoeuvring on surfaces for a diverse set of tasks, including exploration, inspection and collection of samples. These opportunities have prompted an interest in bimodal aerial and surface locomotion on both engineered and natural surfaces. To accomplish such novel robot behaviours, recent efforts have included advancing our understanding of the aerodynamics of surface approach and take-off, the contact dynamics of perching and attachment and making surface locomotion more efficient and robust. While current aerial robots show promise, flying animals, including insects, bats and birds, far surpass them in versatility, reliability and robustness. The maximal size of both perching animals and robots is limited by scaling laws for both adhesion and claw-based surface attachment. Biomechanists can use the current variety of specialized robots as inspiration for probing unknown aspects of bimodal animal locomotion. Similarly, the pitch-up landing manoeuvres and surface attachment techniques of animals can offer an evolutionary design guide for developing robots that perch on more diverse and complex surfaces.

Concepts: Insect, Bird, Aerodynamics, Bat, Locomotion, Animal locomotion, Flight, Flying and gliding animals


The coordination of movement across the body is a fundamental, yet poorly understood aspect of motor control. Mutant mice with cerebellar circuit defects exhibit characteristic impairments in locomotor coordination; however, the fundamental features of this gait ataxia have not been effectively isolated. Here we describe a novel system (LocoMouse) for analyzing limb, head, and tail kinematics of freely walking mice. Analysis of visibly ataxic Purkinje cell degeneration (pcd) mice reveals that while differences in the forward motion of individual paws are fully accounted for by changes in walking speed and body size, more complex 3D trajectories and, especially, inter-limb and whole-body coordination are specifically impaired. Moreover, the coordination deficits in pcd are consistent with a failure to predict and compensate for the consequences of movement across the body. These results isolate specific impairments in whole-body coordination in mice and provide a quantitative framework for understanding cerebellar contributions to coordinated locomotion.

Concepts: Motor control, Motor coordination, Ataxia, Cerebellum, Purkinje cell, Walking, Locomotion, Animal locomotion


Gait recovery after neurological disorders requires remastering the interplay between body mechanics and gravitational forces. Despite the importance of gravity-dependent gait interactions and active participation for promoting this learning, these essential components of gait rehabilitation have received comparatively little attention. To address these issues, we developed an adaptive algorithm that personalizes multidirectional forces applied to the trunk based on patient-specific motor deficits. Implementation of this algorithm in a robotic interface reestablished gait dynamics during highly participative locomotion within a large and safe environment. This multidirectional gravity-assist enabled natural walking in nonambulatory individuals with spinal cord injury or stroke and enhanced skilled locomotor control in the less-impaired subjects. A 1-hour training session with multidirectional gravity-assist improved locomotor performance tested without robotic assistance immediately after training, whereas walking the same distance on a treadmill did not ameliorate gait. These results highlight the importance of precise trunk support to deliver gait rehabilitation protocols and establish a practical framework to apply these concepts in clinical routine.

Concepts: Spinal cord, Gravitation, Spinal cord injury, Running, Walking, Locomotion, Animal locomotion, Gait analysis


To examine the relationship between polypharmacy and gait performance during simple (normal walk (NW)) and complex (walking while talking (WWT)) locomotion.

Concepts: Running, Walking, Locomotion, Animal locomotion