Discover the most talked about and latest scientific content & concepts.

Concept: Angular momentum


Spin-transfer torques offer great promise for the development of spin-based devices. The effects of spin-transfer torques are typically analysed in terms of adiabatic and non-adiabatic contributions. Currently, a comprehensive interpretation of the non-adiabatic term remains elusive, with suggestions that it may arise from universal effects related to dissipation processes in spin dynamics, while other studies indicate a strong influence from the symmetry of magnetization gradients. Here we show that enhanced magnetic imaging under dynamic excitation can be used to differentiate between non-adiabatic spin-torque and extraneous influences. We combine Lorentz microscopy with gigahertz excitations to map the orbit of a magnetic vortex core with <5 nm resolution. Imaging of the gyrotropic motion reveals subtle changes in the ellipticity, amplitude and tilt of the orbit as the vortex is driven through resonance, providing a robust method to determine the non-adiabatic spin torque parameter β=0.15±0.02 with unprecedented precision, independent of external effects.

Concepts: Magnetic field, Angular momentum, Fundamental physics concepts, Torque, Magnetism, Magnetic moment, Force, Sound


Shaping the topology of light, by way of spin or orbital angular momentum engineering, is a powerful tool to manipulate matter on the nanoscale. Conventionally, such methods focus on shaping the incident beam of light and not the full interaction between the light and the object to be manipulated. We theoretically show that tailoring the topology of the phase space of the light particle interaction is a fundamentally more versatile approach, enabling dynamics that may not be achievable by shaping of the light alone. In this manner, we find that optically asymmetric (Janus) particles can become stable nanoscale motors even in a light field with zero angular momentum. These precessing steady states arise from topologically protected anticrossing behavior of the vortices of the optical torque vector field. Furthermore, by varying the wavelength of the incident light, we can control the number, orientations, and the stability of the spinning states. These results show that the combination of phase-space topology and particle asymmetry can provide a powerful degree of freedom in designing nanoparticles for optimal external manipulation in a range of nano-optomechanical applications.

Concepts: Photon, Quantum mechanics, Optics, Angular momentum, Fundamental physics concepts, Spin, Light, Particle physics


Internet data traffic capacity is rapidly reaching limits imposed by optical fiber nonlinear effects. Having almost exhausted available degrees of freedom to orthogonally multiplex data, the possibility is now being explored of using spatial modes of fibers to enhance data capacity. We demonstrate the viability of using the orbital angular momentum (OAM) of light to create orthogonal, spatially distinct streams of data-transmitting channels that are multiplexed in a single fiber. Over 1.1 kilometers of a specially designed optical fiber that minimizes mode coupling, we achieved 400-gigabits-per-second data transmission using four angular momentum modes at a single wavelength, and 1.6 terabits per second using two OAM modes over 10 wavelengths. These demonstrations suggest that OAM could provide an additional degree of freedom for data multiplexing in future fiber networks.

Concepts: Angular momentum, Fundamental physics concepts, Optical fiber


To interpret visual-motion events, the underlying computation must involve internal reference to the motion status of the observer’s head. We show here that layer 6 (L6) principal neurons in mouse primary visual cortex (V1) receive a diffuse, vestibular-mediated synaptic input that signals the angular velocity of horizontal rotation. Behavioral and theoretical experiments indicate that these inputs, distributed over a network of 100 L6 neurons, provide both a reliable estimate and, therefore, physiological separation of head-velocity signals. During head rotation in the presence of visual stimuli, L6 neurons exhibit postsynaptic responses that approximate the arithmetic sum of the vestibular and visual-motion response. Functional input mapping reveals that these internal motion signals arrive into L6 via a direct projection from the retrosplenial cortex. We therefore propose that visual-motion processing in V1 L6 is multisensory and contextually dependent on the motion status of the animal’s head.

Concepts: Brain, Angular momentum, Summation, Visual perception, Arithmetic, Lateral geniculate nucleus, Retinotopy, Motion perception


Transmitting quantum information between two remote parties is a requirement for many quantum applications; however, direct transmission of states is often impossible because of noise and loss in the communication channel. Entanglement-enhanced state communication can be used to avoid this issue, but current techniques require extensive experimental resources to transmit large quantum states deterministically. To reduce these resource requirements, we use photon pairs hyperentangled in polarization and orbital angular momentum to implement superdense teleportation, which can communicate a specific class of single-photon ququarts. We achieve an average fidelity of 87.0(1)%, almost twice the classical limit of 44% with reduced experimental resources than traditional techniques. We conclude by discussing the information content of this constrained set of states and demonstrate that this set has an exponentially larger state space volume than the lower-dimensional general states with the same number of state parameters.

Concepts: Photon, Quantum mechanics, Angular momentum, Fundamental physics concepts, Spin, Quantum field theory, Radio, Albert Einstein


The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks.

Concepts: Angular momentum, Momentum, Light, Electromagnetic radiation, Laser, Million, Visible spectrum, Whispering gallery


We demonstrate the creation of two novel double-resonance conditions between spin-1 and spin-½ nuclei in a crystalline solid. Using a magnetic field oscillating at the spin-½ Larmor frequency, the nuclear quadrupole resonance (NQR) frequency is matched to the Rabi or Rabi plus Larmor frequency, as opposed to the Larmor frequency as is conventionally done. We derive expressions for the cross-polarization rate for all three conditions in terms of the relevant secular dipolar Hamiltonian, and demonstrate with these expressions how to measure the strength of the heterogenous dipolar coupling using only low magnetic fields. In addition, the combination of different resonance conditions permits the measurement of the spin-½ angular momentum vector using spin-1 NQR, opening up an alternate modality for the monitoring of low-field nuclear magnetic resonance. We use ammonium nitrate to explore these resonance conditions, and furthermore use the oscillating field to increase the signal-to-noise ratio per time by a factor of 3.5 for NQR detection of this substance.

Concepts: Electromagnetism, Quantum mechanics, Angular momentum, Fundamental physics concepts, Spin, Nuclear magnetic resonance, Nuclear quadrupole resonance, Zero field NMR


Metallic components such as plasmonic gratings and plasmonic lenses are routinely used to convert free-space beams into propagating surface plasmon polaritons and vice versa. This generation of couplers handles relatively simple light beams, such as plane waves or Gaussian beams. Here we present a powerful generalization of this strategy to more complex wavefronts, such as vortex beams that carry orbital angular momentum, also known as topological charge. This approach is based on the principle of holography: the coupler is designed as the interference pattern of the incident vortex beam and focused surface plasmon polaritons. We have integrated these holographic plasmonic interfaces into commercial silicon photodiodes, and demonstrated that such devices can selectively detect the orbital angular momentum of light. This holographic approach is very general and can be used to selectively couple free-space beams into any type of surface wave, such as focused surface plasmon polaritons and plasmonic Airy beams.

Concepts: Diffraction, Quantum mechanics, Angular momentum, Light, Coherence, Wave, Surface plasmon resonance, Diffraction grating


The spin and orbital magnetic moments, as well as the magnetic anisotropy energy (MAE), of small 4d transition metal ™ clusters are systematically studied by using the spin-orbit coupling (SOC) implementation of the density-functional theory (DFT). The effects of spin-orbit interactions on geometrical structures and spin moments are too weak to alternate relative stabilities of different low-lying isomers. Remarkable orbital contributions to cluster magnetic moments are identified in Ru, Rh, and Pd clusters, in contrast to immediate quenching of the atomic orbital moment at the dimer size in other elemental clusters. More interestingly, there is always collinearity between total spin and orbital moments (antiferromagnetic or ferromagnetic coupling depends on the constituent atoms whose 4d subshell is less or more than half-filled). The clusters preserve the validity of Hund’s rules for the sign of orbital moment. The calculations on MAEs reveal the complicated changes of the easy axes in different structures. The perturbation theory and the first-principles calculations are compared to emphasize how MAEs evolve with cluster size. Finally, large orbital moments combined with strong spin-orbit coupling are proposed to account for large MAEs in Ru, Rh, and Pd clusters.

Concepts: Quantum mechanics, Angular momentum, Fundamental physics concepts, Atom, Magnetism, Celestial mechanics, Magnetic anisotropy, Electron shell


Magnetic therapy is an alternative medicine practice involving the use of magnetic fields subjected to certain parts of the body and stimulates healing from a range of health problems. In this paper, an embedded nano-antenna system using the optical spins generated from a particular configuration of microrings (PANDA) is proposed. The orthogonal solitons pairs corresponding to the left-hand and right-hand optical solitons (photons) produced from dark-bright soliton conversion can be simultaneously detected within the system at the output ports. Two possible spin states which are assigned as angular momentum of either + ħ or - ħ will be absorbed by an object whenever this set of orthogonal solitons is imparted to the object. Magnetic moments could indeed arise from the intrinsic property of spins. By controlling some important parameters of the system such as soliton input power, coupling coefficients and sizes of rings, output signals from microring resonator system can be tuned and optimized to be used as magnetic therapy array.

Concepts: Medicine, Magnetic field, Angular momentum, Spin, Dispersion, Vector soliton, Soliton