Discover the most talked about and latest scientific content & concepts.

Concept: Andes


Geographic barriers and elevational gradients have long been recognized as important in species diversification. Here, we illustrate an example where both mechanisms have shaped the genetic structure of the Neotropical rainfrog, Pristimantis ornatissimus, which has also resulted in speciation. This species was thought to be a single evolutionary lineage distributed throughout the Ecuadorian Chocó and the adjacent foothills of the Andes. Based on recent sampling of P. ornatissimus sensu lato, we provide molecular and morphological evidence that support the validity of a new species, which we name Pristimantis ecuadorensis sp. nov. The sister species are elevational replacements of each other; the distribution of Pristimantis ornatissimus sensu stricto is limited to the Ecuadorian Chocó ecoregion (< 1100 m), whereas the new species has only been found at Andean localities between 1450-1480 m. Given the results of the Multiple Matrix Regression with Randomization analysis, the genetic difference between P. ecuadorensis and P. ornatissimus is not explained by geographic distance nor environment, although environmental variables at a finer scale need to be tested. Therefore this speciation event might be the byproduct of stochastic historic extinction of connected populations or biogeographic events caused by barriers to dispersal such as rivers. Within P. ornatissimus sensu stricto, morphological patterns and genetic structure seem to be related to geographic isolation (e.g., rivers). Finally, we provide an updated phylogeny for the genus, including the new species, as well as other Ecuadorian Pristimantis.

Concepts: Evolution, Biology, Species, Speciation, Extinction, Andes, Biogeography, Ecuador


Potato (Solanum tuberosum L.) originates from the Andes and evolved short-day-dependent tuber formation as a vegetative propagation strategy. Here we describe the identification of a central regulator underlying a major-effect quantitative trait locus for plant maturity and initiation of tuber development. We show that this gene belongs to the family of DOF (DNA-binding with one finger) transcription factors and regulates tuberization and plant life cycle length, by acting as a mediator between the circadian clock and the StSP6A mobile tuberization signal. We also show that natural allelic variants evade post-translational light regulation, allowing cultivation outside the geographical centre of origin of potato. Potato is a member of the Solanaceae family and is one of the world’s most important food crops. This annual plant originates from the Andean regions of South America. Potato develops tubers from underground stems called stolons. Its equatorial origin makes potato essentially short-day dependent for tuberization and potato will not make tubers in the long-day conditions of spring and summer in the northern latitudes. When introduced in temperate zones, wild material will form tubers in the course of the autumnal shortening of day-length. Thus, one of the first selected traits in potato leading to a European potato type is likely to have been long-day acclimation for tuberization. Potato breeders can exploit the naturally occurring variation in tuberization onset and life cycle length, allowing varietal breeding for different latitudes, harvest times and markets.

Concepts: Genetics, Solanaceae, Potato, Plant stem, Tuber, Plant reproduction, Andes, Rhizome


Mountain ranges are the world’s natural water towers and provide water resources for millions of people. However, their hydrological balance and possible future changes in river flow remain poorly understood because of high meteorological variability, physical inaccessibility, and the complex interplay between climate, cryosphere, and hydrological processes. Here, we use a state-of-the art glacio-hydrological model informed by data from high-altitude observations and the latest climate change scenarios to quantify the climate change impact on water resources of two contrasting catchments vulnerable to changes in the cryosphere. The two study catchments are located in the Central Andes of Chile and in the Nepalese Himalaya in close vicinity of densely populated areas. Although both sites reveal a strong decrease in glacier area, they show a remarkably different hydrological response to projected climate change. In the Juncal catchment in Chile, runoff is likely to sharply decrease in the future and the runoff seasonality is sensitive to projected climatic changes. In the Langtang catchment in Nepal, future water availability is on the rise for decades to come with limited shifts between seasons. Owing to the high spatiotemporal resolution of the simulations and process complexity included in the modeling, the response times and the mechanisms underlying the variations in glacier area and river flow can be well constrained. The projections indicate that climate change adaptation in Central Chile should focus on dealing with a reduction in water availability, whereas in Nepal preparedness for flood extremes should be the policy priority.

Concepts: Water, Ice, Climate, Weather, Hydrology, Climate change, Population density, Andes


The Tropical Andes are an important global biodiversity hotspot, harbouring extraordinarily high richness and endemism. Although elevational richness and speciation have been studied independently in some Andean groups, the evolutionary and ecological processes that explain elevational richness patterns in the Andes have not been analysed together. Herein, we elucidate the processes underlying Andean richness patterns using glassfrogs (Centrolenidae) as a model system. Glassfrogs show the widespread mid-elevation diversity peak for both local and regional richness. Remarkably, these patterns are explained by greater time (montane museum) rather than faster speciation at mid-elevations (montane species pump), despite the recency of the major Andean uplift. We also show for the first time that rates of climatic-niche evolution and elevational change are related, supporting the hypothesis that climatic-niche conservatism decelerates species' shifts in elevational distributions and underlies the mid-elevation richness peak. These results may be relevant to other Andean clades and montane systems globally.

Concepts: Biodiversity, Conservation biology, Evolution, Species, Ecology, Theory, Andes, Glass frog


Bioarchaeological approaches are well suited for examining past responses to political and environmental changes. In the Andes, we hypothesized that political and environmental changes around AD 1100 resulted in behavioral changes, visible as shifts in paleodiet and paleomobility, among individuals in the San Pedro de Atacama oases and Loa River Valley. To investigate this hypothesis, we generated carbon and oxygen isotope data from cemeteries dating to the early Middle Horizon (Larache, Quitor-5, Solor-3), late Middle Horizon (Casa Parroquial, Coyo Oriental, Coyo-3, Solcor-Plaza, Solcor-3, Tchecar), and Late Intermediate Period (Caspana, Quitor-6 Tardío, Toconce, Yaye-1, Yaye-2, Yaye-3, Yaye-4). Carbon isotope data demonstrate a greater range of carbon sources during the late Middle Horizon compared with the Late Intermediate Period; while most individuals consumed largely C3 sources, some late Middle Horizon individuals consumed more C4 sources. Oxygen isotope data demonstrate greater diversity in drinking water sources during the late Middle Horizon compared with the Late Intermediate Period. Water samples were analyzed to provide baseline data on oxygen isotope variability within the Atacama Desert, and demonstrated that oxygen isotope values are indistinguishable in the San Pedro and Loa Rivers. However, oxygen isotope values in water sources in the high-altitude altiplano and coast are distinct from those in the San Pedro and Loa Rivers. In conclusion, instead of utilizing a wider variety of resources after environmental and political changes, individuals exhibited a wider range of paleodietary and paleomobility strategies during the Middle Horizon, a period of environmental and political stability. Am J Phys Anthropol 157:179-201, 2015. © 2015 Wiley Periodicals, Inc.

Concepts: Water, Carbon, Chile, Andes, Atacama Desert, Antofagasta Region, San Pedro de Atacama, Loa River


As the oomycete pathogen causing potato late blight disease, Phytophthora infestans triggered the famous 19(th)-century Irish potato famine and remains the leading cause of global commercial potato crop destruction. But the geographic origin of the genotype that caused this devastating initial outbreak remains disputed, as does the New World center of origin of the species itself. Both Mexico and South America have been proposed, generating considerable controversy. Here, we readdress the pathogen’s origins using a genomic dataset encompassing 71 globally-sourced modern and historical samples of P. infestans and the hybrid species P. andina, a close relative known only from the Andean highlands. Previous studies have suggested that the nuclear DNA lineage behind the initial outbreaks in Europe in 1845 is now extinct. Analysis of P. andina’s phased haplotypes recovered eight haploid genome sequences, four of which represent a previously unknown basal lineage of P. infestans closely related to the famine-era lineage. Our analyses further reveal that clonal lineages of both P. andina and historical P. infestans diverged earlier than modern Mexican lineages, casting doubt on recent claims of a Mexican center of origin. Finally, we use haplotype phasing to demonstrate that basal branches of the clade comprising Mexican samples are occupied by clonal isolates collected from wild Solanum hosts, suggesting that modern Mexican P. infestans diversified on S. tuberosum after a host jump from a wild species and that the origins of P. infestans are more complex than was previously thought.

Concepts: Gene, Potato, Andes, Oomycete, Phytophthora infestans, Great Famine, Potatoes, Phytophthora


The analysis of ancient human DNA from South America allows the exploration of pre-Columbian population history through time and to directly test hypotheses about cultural and demographic evolution. The Middle Horizon (650-1100 AD) represents a major transitional period in the Central Andes, which is associated with the development and expansion of ancient Andean empires such as Wari and Tiwanaku. These empires facilitated a series of interregional interactions and socio-political changes, which likely played an important role in shaping the region’s demographic and cultural profiles. We analyzed individuals from three successive pre-Columbian cultures present at the Huaca Pucllana archaeological site in Lima, Peru: Lima (Early Intermediate Period, 500-700 AD), Wari (Middle Horizon, 800-1000 AD) and Ychsma (Late Intermediate Period, 1000-1450 AD). We sequenced 34 complete mitochondrial genomes to investigate the potential genetic impact of the Wari Empire in the Central Coast of Peru. The results indicate that genetic diversity shifted only slightly through time, ruling out a complete population discontinuity or replacement driven by the Wari imperialist hegemony, at least in the region around present-day Lima. However, we caution that the very subtle genetic contribution of Wari imperialism at the particular Huaca Pucllana archaeological site might not be representative for the entire Wari territory in the Peruvian Central Coast.

Concepts: DNA, South America, Americas, Andes, Peru, Inca Empire, Empire, Imperialism


Archaeological research suggests significant human occupation in the arid Andean highlands during the 13th to 15th centuries, whereas paleoclimatic studies reveal prolonged drier and colder conditions during that period. Which subsistence strategy supported local societies in this harsh environment? Our field and aerial surveys of archaeological dwelling sites, granaries, and croplands provide the first evidence of extended pre-Hispanic agriculture supporting dense human populations in the arid Andes of Bolivia. This unique agricultural system associated with quinoa cultivation was unirrigated, consisting of simple yet extensive landscape modifications. It relied on highly specific environmental knowledge and a set of water-saving practices, including microterracing and biennial fallowing. This intense agricultural activity developed during a period of unfavorable climatic change on a regional and global scale, illustrative of efficient adaptive strategies to cope with this climatic change.

Concepts: Agriculture, Climate, Climate change, Andes, World population, Crop rotation, Quechua, Cultivation


Examination of three frozen bodies, a 13-y-old girl and a girl and boy aged 4 to 5 y, separately entombed near the Andean summit of Volcán Llullaillaco, Argentina, sheds new light on human sacrifice as a central part of the Imperial Inca capacocha rite, described by chroniclers writing after the Spanish conquest. The high-resolution diachronic data presented here, obtained directly from scalp hair, implies escalating coca and alcohol ingestion in the lead-up to death. These data, combined with archaeological and radiological evidence, deepen our understanding of the circumstances and context of final placement on the mountain top. We argue that the individuals were treated differently according to their age, status, and ritual role. Finally, we relate our findings to questions of consent, coercion, and/or compliance, and the controversial issues of ideological justification and strategies of social control and political legitimation pursued by the expansionist Inca state before European contact.

Concepts: Bolivia, Argentina, Andes, Ecuador, Peru, Spanish Empire, Human sacrifice, Child sacrifice


This study describes the genetic diversity and population structure of 194 native maize populations from 23 countries of Latin America and the Caribbean. The germplasm, representing 131 distinct landraces, was genetically characterized as population bulks using 28 SSR markers. Three main groups of maize germplasm were identified. The first, the Mexico and Southern Andes group, highlights the Pre-Columbian and modern exchange of germplasm between North and South America. The second group, Mesoamerica lowland, supports the hypothesis that two separate human migration events could have contributed to Caribbean maize germplasm. The third, the Andean group, displayed early introduction of maize into the Andes, with little mixing since then, other than a regional interchange zone active in the past. Events and activities in the pre- and post-Columbian Americas including the development and expansion of pre-Columbian cultures and the arrival of Europeans to the Americas are discussed in relation to the history of maize migration from its point of domestication in Mesoamerica to South America and the Caribbean through sea and land routes.

Concepts: United States, North America, South America, Americas, Central America, Andes, Nicaragua, Indigenous peoples of the Americas