Discover the most talked about and latest scientific content & concepts.

Concept: Anatase


In a mixed solvent of water and ethanol, polystyrene/titanium dioxide (PSt/TiO2) composite particles of core-shell structure were prepared by hydrolysis of tetrabutyl titanate in the presence of cationic PSt particles or anionic PSt particles surface-treated using gamma-aminopropyl triethoxysilane. Hollow TiO2 particles were obtained through calcination of the PSt/TiO2 core-shell particles to burn off the PSt core or through dissolution of the core by tetrahydrofuran (THF). An alternative process constituted of preheating the PSt/TiO2 particles at 200[degree sign]C to allow partial crystallization followed by calcination or PSt dissolution by THF. The outcome TiO2 particles thus prepared were examined by TEM, and hollow TiO2 particles were observed. The crystalline phase structure and phase transformation were characterized, which revealed that preheating before the removal of the PSt core was useful to achieve the desired hollow TiO2 particles, and the calcination process was beneficial to the formation of anatase and rutile structures. The tests of TiO2 particles as catalyst in the photodegradation of Rhodamine B demonstrated that a much higher catalytic activity was observed with the TiO2 hollow particles prepared through calcination combined with preheating.

Concepts: Ultraviolet, Enzyme, Catalysis, Solvent, Titanium dioxide, Rutile, Photocatalysis, Anatase


The prototypical photocatalyst TiO2 exists in different polymorphs, the most common forms are the anatase- and rutile-crystal structures. Generally, anatase is more active than rutile, but no consensus exists to explain this difference. Here we demonstrate that it is the bulk transport of excitons to the surface that contributes to the difference. Utilizing high -quality epitaxial TiO2 films of the two polymorphs we evaluate the photocatalytic activity as a function of TiO2-film thickness. For anatase the activity increases for films up to ~5 nm thick, while rutile films reach their maximum activity for ~2.5 nm films already. This shows that charge carriers excited deeper in the bulk contribute to surface reactions in anatase than in rutile. Furthermore, we measure surface orientation dependent activity on rutile single crystals. The pronounced orientation-dependent activity can also be correlated to anisotropic bulk charge carrier mobility, suggesting general importance of bulk charge diffusion for explaining photocatalytic anisotropies.

Concepts: Particle physics, Orientation, Titanium dioxide, Rutile, Young's modulus, Photocatalysis, Anatase, Charge carrier


In nanostructured thin films, photogenerated charge carriers can access the surface more easily than in dense films and thus react more readily. However, the high surface area of these films has also been associated with enhanced recombination losses via surface states. We herein use transient absorption spectroscopy to compare the ultrafast charge carrier kinetics in dense and nanostructured TiO2 films for its two most widely used polymorphs: anatase and rutile. We find that nanostructuring does not enhance recombination rates on ultrafast timescales, indicating that surface state mediated recombination is not a key loss pathway for either TiO2 polymorph. Rutile shows faster, and less intensity-dependent recombination than anatase, which we assign to its higher doping density. For both polymorphs, we conclude that bulk rather than surface recombination is the primary determinant of charge carrier lifetime.

Concepts: Density, Solar cell, Titanium dioxide, Rutile, Absorption spectroscopy, Surface area, Anatase, Charge carrier


The synthesis of highly-crystalline porous TiO(2) microspheres is reported using ultrasonic spray pyrolysis (USP) in the presence of colloidal silica as a template. We have exploited the interactions between hot SiO(2) template particles surface and TiO(2) precursor that occur during reaction inside the droplets, to control the physical and chemical properties of the resulting particles. Varying the SiO(2) to titanium precursor molar ratio and the colloidal silica dimension, we obtained porous titania microspheres with tunable morphology, porosity, BET surface area, crystallite size, band-gap, and phase composition. In this regard, we have also observed the preferential formation of anatase vs. rutile with increasing initial surface area of the silica template. The porous TiO(2) microspheres were tested in the photocatalytic degradation of nitrogen oxides (NO(x)) in the gas phase. USP prepared nanostructured titania samples were found to have significantly superior specific activity per surface area compared to a commercial reference sample (P25 by Evonik-Degussa).

Concepts: Oxygen, Chemical reaction, Oxide, Oxides, Titanium dioxide, Titanium, Rutile, Anatase


Anatase type nitrogen-fluorine (N-F) co-doped TiO2 nanobelts were successfully prepared by a solvothermal method, which amorphous titania microspheres were used as the precursors. The as-prepared TiO2 nanobelts are composed of thin narrow nanobelts, and it is noted that there are large amount of wormhole-like mesopores on these narrow nanobelts. Photocatalytic activity of the N-F co-doped TiO2 nanobelts was measured by the reaction of photocatalytic degradation of methyl orange. Results indicate that the photocatalytic activity of the N-F co-doped TiO2 nanobelts is higher than that of P25, which is mainly ascribed to wormhole-like mesopores like prison, larger surface area and enhanced absorption of light due to N-F co-doping. Interestingly, it is also found that the photocatalytic activity can be further enhanced when tested in a new testing method because more photons can be captured by the nanobelts to stimulate the formation of the hole-electron pair.

Concepts: Photon, Electromagnetic radiation, Solar cell, Absorption, Titanium dioxide, Photocatalysis, Surface area, Anatase


A photocatalytic, TiO2-based microreactor is designed and fabricated on a metal-titanium foil. The microchannel is mechanically engraved in the substrate foil and a double-layered TiO2 anatase film is immobilized on its inner walls with a two-step synthesis, which included anodization and a hydrothermal treatment. X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirm the presence of an approximately 10-µm-thick layer of titania nanotubes and anatase nanoparticles. The SEM and transmission electron microscopy (TEM) of the cross-sections show a dense interface between the titanium substrate and the TiO2 nanotubes. An additional layer of TiO2-anatase nanoparticles on the top of the film provides a large, photocatalytic surface area. The metal-titanium substrate with a functionalized serpentine channel is sealed with UV-transparent Plexiglas® and four 0.8-mW UV LEDs combined with a power controller on a small printed-circuit board are fixed over the substrate. The photocatalytic activity and the kinetic properties for the degradation of caffeine are provided and the longer-term stability of the TiO2 film is evaluated. The results show that after 6 months of use and 3600 working cycles the microreactor still exhibits 60% of its initial efficiency.

Concepts: Electron, Electron microscope, X-ray, Titanium dioxide, Transmission electron microscopy, Scanning electron microscope, Photocatalysis, Anatase


This communication describes a method for facile synthesis of mesoporous anatase TiO2 nanocup crystals. The novel cuplike morphology of TiO2 decorated with gold (Au-TiO2) yields remarkably high photocatalytic activity for degradation of methylene blue under visible light irradiation.

Concepts: Light, Literary theory, Chemical element, Titanium dioxide, Novel, Photocatalysis, Visible spectrum, Anatase


Photocatalysis is a promising advanced water treatment technology, and recently the possibility of using hydrogenation to improve the photocatalytic efficiency of titanium dioxide has generated much research interest. Herein we report that the use of high temperature hydro-genation to prepare black TiO2 primarily results in the for-mation of bulk defects in the material without affecting its electronic band structure. The hydrogenated TiO2 exhibited significantly worse photocatalytic activity under simulated sunlight compared to the unhydrogenated control, and thus we propose that high temperature hydrogenation can be counterproductive to improving the photocatalytic activity of TiO2, due to its propensity to form bulk vacancy defects.

Concepts: Titanium dioxide, Titanium, Pigment, Photocatalysis, Crystallographic defect, Anatase, Electronic band structure, Band gap


In this work, we report a novel approach to fabricate hierarchical TiO2 microspheres (HTMS) assembled by ultrathin nanoribbons where an anatase/TiO2(B) heterojunction and high energy facet coexist. The as-adopted approach involves (1) nonaqueous solvothermal treatment of a mixture of tetrabutyl titanate and acetic acid and (2) topotactical transformation into HTMS via thermal annealing. By this approach, the TiO2(B) phase usually synthesized from an alkaline treatment route could be initially formed. Subsequently, phase transition from TiO2(B) to anatase TiO2 occurs upon thermal treatment. It is demonstrated that such phase transition is accompanied by crystallographic orientation along the c-axis of anatase and TiO2(B) crystals, resulting in not only a coherent interface between two phases but also oriented attachment of anatase mesocrystals along the [001] direction, and finally high-energy (001) facet exposure. Interestingly, this work provides an alternative fluorine-free route for the synthesis of TiO2 crystals with high-energy (001) facet exposure. The structural analysis reveals that lattice-match induced topotactic transformation from TiO2(B) to anatase is the sole reason for the (001) facet exposure of anatase TiO2. The photocatalytic test for acetaldehyde decomposition shows that HTMS with anatase/TiO2(B) heterojunction and high-energy (001) facet exhibits superior photocatalytic efficiency compared with the relevant commercial product P25, which can be ascribed to the synergistic effect of large surface area, anatase/TiO2(B) heterojunction as well as high-energy facet exposure.

Concepts: Crystallography, Ethanol, Acetic acid, Titanium dioxide, Photocatalysis, Acetaldehyde, Base, Anatase


Defective TiO2-x was synthesized via a facile anodization technique. Electron paramagnetic resonance spectra confirmed the presence of oxygen vacancy, which extended the photon-absorbance deeply into the visible-light region. By stripping off the nanotubes on top, a hexagonally dimpled layer of black TiO2-x was exposed and exhibited remarkable photocatalytic activity.

Concepts: Magnetic moment, Titanium dioxide, Electron paramagnetic resonance, Photocatalysis, Resonance, Photocatalytic water splitting, Anatase, Passivation