SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Analytic Hierarchy Process

163

In order to reduce soil erosion and desertification, the Sloping Land Conversion Program has been conducted in China for more than 15 years, and large areas of farmland have been converted to forest and grassland. However, this large-scale vegetation-restoration project has faced some key problems (e.g. soil drying) that have limited the successful development of the current ecological-recovery policy. Therefore, it is necessary to know about the land use, vegetation, and soil, and their inter-relationships in order to identify the suitability of vegetation restoration. This study was conducted at the watershed level in the ecologically vulnerable region of the Loess Plateau, to evaluate the land suitability using the analytic hierarchy process (AHP). The results showed that (1) the area unsuitable for crops accounted for 73.3% of the watershed, and the main factors restricting cropland development were soil physical properties and soil nutrients; (2) the area suitable for grassland was about 86.7% of the watershed, with the remaining 13.3% being unsuitable; (3) an area of 3.95 km(2), accounting for 66.7% of the watershed, was unsuitable for forest. Overall, the grassland was found to be the most suitable land-use to support the aims of the Sloping Land Conversion Program in the Liudaogou watershed. Under the constraints of soil water shortage and nutrient deficits, crops and forests were considered to be inappropriate land uses in the study area, especially on sloping land. When selecting species for re-vegetation, non-native grass species with high water requirements should be avoided so as to guarantee the sustainable development of grassland and effective ecological functioning. Our study provides local land managers and farmers with valuable information about the inappropriateness of growing trees in the study area along with some information on species selection for planting in the semi-arid area of the Loess Plateau.

Concepts: Nutrient, Soil, Erosion, Analytic Hierarchy Process, Analytical hierarchy, Land use, Geomorphology, Deforestation

28

Flood spreading is a suitable strategy for controlling and benefiting from floods. Selecting suitable areas for flood spreading and directing the floodwater into permeable formations are amongst the most effective strategies in flood spreading projects. Having combined geographic information systems (GIS) and multi-criteria decision analysis approaches, the present study sought to locate the most suitable areas for flood spreading operation in the Garabaygan Basin of Iran. To this end, the data layers relating to the eight effective factors were prepared in GIS environment. This stage was followed by elimination of the exclusionary areas for flood spreading while determining the potentially suitable ones. Having closely examined the potentially suitable areas using the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) II and analytic hierarchy process (AHP) methods, the land suitability map for flood spreading was produced. The PROMETHEE II and AHP were used for ranking all the alternatives and weighting the criteria involved, respectively. The results of the study showed that most suitable areas for the artificial groundwater recharge are located in Quaternary Q(g) and Q(gsc) geologic units and in geomorphological units of pediment and Alluvial fans with slopes not exceeding 3 %. Furthermore, significant correspondence between the produced map and the control areas, where the flood spreading projects were successfully performed, provided further evidence for the acceptable efficiency of the integrated PROMETHEE II-AHP method in locating suitable flood spreading areas.

Concepts: Water, Geography, Geographic information system, Hydrology, Decision theory, Decision making software, Operations research, Analytic Hierarchy Process

28

River water quality sampling frequency is an important aspect of the river water quality monitoring network. A suitable sampling frequency for each station as well as for the whole network will provide a measure of the real water quality status for the water quality managers as well as the decision makers. The analytic hierarchy process (AHP) is an effective method for decision analysis and calculation of weighting factors based on multiple criteria to solve complicated problems. This study introduces a new procedure to design river water quality sampling frequency by applying the AHP. We introduce and combine weighting factors of variables with the relative weights of stations to select the sampling frequency for each station, monthly and yearly. The new procedure was applied for Jingmei and Xindian rivers, Taipei, Taiwan. The results showed that sampling frequency should be increased at high weighted stations while decreased at low weighted stations. In addition, a detailed monitoring plan for each station and each month could be scheduled from the output results. Finally, the study showed that the AHP is a suitable method to design a system for sampling frequency as it could combine multiple weights and multiple levels for stations and variables to calculate a final weight for stations, variables, and months.

Concepts: Algorithm, Decision theory, Decision making software, Operations research, Analytic Hierarchy Process, Analytical hierarchy, Weight, Arithmetical hierarchy

28

Sustainability assessments of coastal beach exploitation are difficult because the identification of appropriate monitoring methodologies and evaluation procedures is still ongoing. In particular, the most suitable procedure for the application of sustainability assessment to coastal beaches remains uncertain. This paper presents a complete sustainability assessment process for coastal beach exploitation based on the analytic hierarchy process (AHP). We developed an assessment framework consisting of 14 indicators derived from the three dimensions of suitability, economic and social value, and ecosystem. We chose a wind power project on a coastal beach of Yancheng as a case study. The results indicated that the wind power farms on the coastal beach were not completely in keeping with sustainable development theory. The construction of the wind power farms had some negative impacts. Therefore, in the design stage, wind turbines should be designed and planned carefully to minimize these negative impacts. In addition, the case study demonstrated that the AHP was capable of addressing the complexities associated with the sustainability of coastal beaches.

Concepts: Assessment, Sustainability, Analytic Hierarchy Process, Renewable energy, Wind power, Wind farm, Wind turbine, Arithmetical hierarchy

28

Successful watershed planning can be enhanced by stakeholder involvement in developing and implementing plans that reflect community goals and resource limitations. Community DECISIONS (Community Decision Support for Integrated, On-the-ground Nutrient Reduction Strategies) is a structured decision process to help stakeholders evaluate strategies that reduce watershed nutrient imbalances. A nutrient accounting algorithm and nutrient treatment database provide information on nutrient loadings and costs of alternative strategies to reduce loadings. Stakeholders were asked to formulate goals for the North Fork Shenandoah River Watershed in Virginia and select among strategies to achieve those goals. The Vector Analytic Hierarchy Process was used to rank strategies. Stakeholders preferred a Maximum strategy that included point source upgrades, riparian buffers, no-till corn silage, wheat cover, and bioretention filters in developed areas. Participants generally agreed that the process helped improve communication among stakeholders, was helpful for watershed planning, and should be used for TMDL (Total Maximum Daily Load) planning. Participants suggested more attention be paid to ensuring that all relevant issues are addressed and all information needed to make decisions is available. Watershed planning should provide stakeholders with clear scientific information about physical and socioeconomic processes. However, planning processes must give stakeholders adequate time to consider issues that may not have been addressed by existing scientific models and datasets.

Concepts: Decision making, Water pollution, Decision theory, Decision making software, Analytic Hierarchy Process, Analytical hierarchy, Plan, Analytic set

28

This paper proposes a two-stage group decision making approach to urban landscape management and planning supported by the analytic hierarchy process. The proposed approach combines an application of the consensus convergence model and the weighted geometric mean method. The application of the proposed approach is shown on a real urban landscape planning problem with a park-forest in Belgrade, Serbia. Decision makers were policy makers, i.e., representatives of several key national and municipal institutions, and experts coming from different scientific fields. As a result, the most suitable management plan from the set of plans is recognized. It includes both native vegetation renewal in degraded areas of park-forest and continued maintenance of its dominant tourism function. Decision makers included in this research consider the approach to be transparent and useful for addressing landscape management tasks. The central idea of this paper can be understood in a broader sense and easily applied to other decision making problems in various scientific fields.

Concepts: Decision making, Decision theory, Management, Decision making software, Analytic Hierarchy Process, Analytical hierarchy, Plan, Arithmetical hierarchy

3

Possible options in a decision often organize as a hierarchy of subdecisions. A recent study concluded that perceptual processes in primates mimic this hierarchical structure and perform subdecisions in parallel. We argue that a flat model that directly selects between final choices accounts more parsimoniously for the reported behavioral and neural data. Critically, a flat model is characterized by decision signals integrating evidence at different hierarchical levels, in agreement with neural recordings showing this integration in localized neural populations. Our results point to the role of experience for building integrated perceptual categories where sensory evidence is merged prior to decision.

Concepts: Human, Critical thinking, Structure, Hierarchy, Heterarchy, Government, Analytic Hierarchy Process, Bishop

1

Deprivation indices are useful measures to study health inequalities. Different techniques are commonly applied to construct deprivation indices, including multi-criteria decision methods such as the analytical hierarchy process (AHP). The multi-criteria deprivation index for the city of Quito is an index in which indicators are weighted by applying the AHP. In this research, a variation of this index is introduced that is calculated using interval AHP methodology. Both indices are compared by applying logistic generalized linear models and multilevel models, considering self-reported health as the dependent variable and deprivation and self-reported quality of life as the independent variables. The obtained results show that the multi-criteria deprivation index for the city of Quito is a meaningful measure to assess neighborhood effects on self-reported health and that the alternative deprivation index using the interval AHP methodology more thoroughly represents the local knowledge of experts and stakeholders. These differences could support decision makers in improving health planning and in tackling health inequalities in more deprived areas.

Concepts: Scientific method, Regression analysis, Decision making, Epistemology, Integral, Methodology, Analytic Hierarchy Process, Index

0

Avulsion is a natural fluvial process but considered it as a hazard in the populated region due to the chance of immense failure of lives and properties. So, early warning indicates that the zone of avulsion can facilitate the people living there. About 317 numbers of local and regional historical imprints of channel cutoff along river Kulik claim the need of this work. The present study tried to identify avulsion potential zone (APZ) of Kulik river of Indo-Bangladesh using multi-parametric weighted combination approach. Analytic hierarchy approach (AHP) is applied for weighting the used parameters. Avulsion potential model clearly exhibits that 9.51-km stream segment of middle and lower catchment is highly susceptible for avulsion especially during sudden high discharge and earthquake incidents. There is also high chance of channel avulsion following the existing Paleo-avulsion courses and left channels. Hard points can also be erected alongside the main channel for resisting channel avulsion propensity.

Concepts: Drainage basin, River delta, Zone of alienation, Analytic Hierarchy Process, Geomorphology, Sediment transport, Fluvial landforms, Sedimentology

0

Rooted deeply in medical multiple criteria decision-making (MCDM), risk assessment is very important especially when applied to the risk of being affected by deadly diseases such as coronary heart disease (CHD). CHD risk assessment is a stochastic, uncertain, and highly dynamic process influenced by various known and unknown variables. In recent years, there has been a great interest in fuzzy analytic hierarchy process (FAHP), a popular methodology for dealing with uncertainty in MCDM. This paper proposes a new FAHP, bimodal fuzzy analytic hierarchy process (BFAHP) that augments two aspects of knowledge, probability and validity, to fuzzy numbers to better deal with uncertainty. In BFAHP, fuzzy validity is computed by aggregating the validities of relevant risk factors based on expert knowledge and collective intelligence. By considering both soft and statistical data, we compute the fuzzy probability of risk factors using the Bayesian formulation. In BFAHP approach, these fuzzy validities and fuzzy probabilities are used to construct a reciprocal comparison matrix. We then aggregate fuzzy probabilities and fuzzy validities in a pairwise manner for each risk factor and each alternative. BFAHP decides about being affected and not being affected by ranking of high and low risks. For evaluation, the proposed approach is applied to the risk of being affected by CHD using a real dataset of 152 patients of Iranian hospitals. Simulation results confirm that adding validity in a fuzzy manner can accrue more confidence of results and clinically useful especially in the face of incomplete information when compared with actual results. Applying the proposed BFAHP on CHD risk assessment of the dataset, it yields high accuracy rate above 85% for correct prediction. In addition, this paper recognizes that the risk factors of diastolic blood pressure in men and high-density lipoprotein in women are more important in CHD than other risk factors.

Concepts: Statistics, Atherosclerosis, Risk, Decision theory, Decision making software, Probability, Analytic Hierarchy Process, Arithmetical hierarchy