Discover the most talked about and latest scientific content & concepts.

Concept: Amyloidosis


Amyloidosis is a major problem in over one hundred diseases, including Alzheimer’s disease (AD). Using the iDISCO visualization method involving targeted molecular labeling, tissue clearing, and light-sheet microscopy, we studied plaque formation in the intact AD mouse brain at up to 27 months of age. We visualized amyloid plaques in 3D together with tau, microglia, and vasculature. Volume imaging coupled to automated detection and mapping enables precise and fast quantification of plaques within the entire intact mouse brain. The present methodology is also applicable to analysis of frozen human brain samples without specialized preservation. Remarkably, amyloid plaques in human brain tissues showed greater 3D complexity and surprisingly large three-dimensional amyloid patterns, or TAPs. The ability to visualize amyloid in 3D, especially in the context of their micro-environment, and the discovery of large TAPs may have important scientific and medical implications.

Concepts: Scientific method, Neuron, Disease, Human brain, Amyloid, Amyloidosis, Beta amyloid, Congo red


Amyloidosis of the gastrointestinal tract, with biopsy-proven disease, is rare. We reviewed a series of patients who presented with biopsy-proven gastrointestinal amyloidosis and report their clinical characteristics, treatments, and survival. This is a retrospective review of data prospectively collected from January 1998 to December 2011 in a tertiary referral center; 2,334 patients with all types of amyloidosis were evaluated during this period. Seventy-six patients (3.2%) had biopsy-proven amyloid involvement of the gastrointestinal tract. Their median age was 61 years (range, 34-79). Systemic amyloidosis with dominant gastrointestinal involvement was present in 60 (79%) patients, whereas the other 16 (21%) patients had amyloidosis localized to the gastrointestinal tract without evidence of an associated plasma cell dyscrasia or other organ involvement. Of the 60 systemic cases, 50 (83%) had immunoglobulin light-chain, five (8%) had familial lysozyme, three (5%) had wild-type transthyretin, and two (3%) had mutant transthyretin amyloidosis. The most frequent symptoms for all patients were weight loss in 33 (45%) and gastrointestinal bleeding in 27 (36%). Incidental identification of amyloidosis on routine endoscopic surveillance played a role in the diagnosis of seven patients with systemic immunoglobulin light-chain, and four patients with immunoglobulin light-chain localized to the gastrointestinal tract. Amyloid protein subtyping was performed in 12 of the cases of localized disease, and all had lambda light chain disease. Of the 50 patients with systemic immunoglobulin light-chain amyloidosis, 45 were treated with anti-plasma cell therapy. The median survival has not been reached for this group. For the 16 patients with localized gastrointestinal amyloidosis, supportive care was the mainstay of treatment; none received anti-plasma cell therapy. All 16 are alive at a median follow-up of 36 months (range, 1-143). Patients with biopsy-proven gastrointestinal amyloidosis often present with weight loss and bleeding. In localized cases, all that underwent typing were due to lambda light chain amyloidosis and none progressed to systemic disease during the period of follow-up. Most patients with systemic disease had immunoglobulin light-chain, and their tolerance of therapy and median survival were excellent. Although a rare manifestation of amyloidosis, staining for amyloid should be considered in patients undergoing gastrointestinal biopsy who have unexplained chronic gastrointestinal symptoms.

Concepts: Protein, Multiple myeloma, Diseases and disorders, Amyloid, Amyloidosis, Congo red, Immunoglobulin light chain, Transthyretin


Transthyretin-related familial amyloid polyneuropathy (TTR-FAP) typically arises as an autonomic neuropathy primarily affecting small fibres and it occurs in adult patients in their second or third decades of life. It progresses rapidly and can lead to death in approximately 10 years. Other phenotypes have been described in non-endemic areas.

Concepts: Evolution, Life, Amyloid, Amyloidosis, Area, Neurological disorders, Familial amyloid polyneuropathy, Transthyretin


Intervention into amyloid deposition with anti-amyloid agents like the polyphenol Epigallocatechin-3-gallate (EGCG) is emerging as an experimental secondary treatment strategy in systemic light chain amyloidosis (AL). In both AL and Multiple Myeloma (MM), soluble immunoglobulin light chains (LC) are produced by clonal plasma cells, but only in AL they form amyloid deposits in vivo. We investigated the amyloid formation of patient-derived LC and their susceptibility to EGCG in vitro to probe commonalities and systematic differences in their assembly mechanisms. We isolated nine LC from urine of AL and MM patients. We quantified their thermodynamic stabilities, and monitored their aggregation under physiological conditions by ThT fluorescence, light scattering, SDS-stability and atomic force microscopy. LC from all patients formed amyloid-like aggregates, albeit with individually different kinetics. LC existed as dimers, ~50% of which were linked by disulfide bridges. Our results suggest that cleavage into LC monomers is required for efficient amyloid formation. The kinetics of AL LC displayed a transition point in concentration dependence, which MM LC lacked. The lack of concentration dependence of MM LC aggregation kinetics suggests that conformational change of the light chain is rate-limiting for these proteins. Aggregation kinetics displayed two distinct phases, which corresponded to the formation of oligomers and amyloid fibrils, respectively. EGCG specifically inhibited the second aggregation phase and induced the formation of SDS-stable, non-amyloid LC aggregates. Our data suggest that EGCG intervention does not depend on the individual LC sequence and is similar to the mechanism observed for amyloid-β and α-synuclein.

Concepts: Protein, Multiple myeloma, In vivo, Amyloid, Monomer, In vitro, Amyloidosis, Immunoglobulin light chain


BACE1 initiates the generation of the β-amyloid peptide, which likely causes Alzheimer’s disease (AD) when accumulated abnormally. BACE1 inhibitory drugs are currently being developed to treat AD patients. To mimic BACE1 inhibition in adults, we generated BACE1 conditional knockout (BACE1fl/fl) mice and bred BACE1fl/flmice with ubiquitin-CreERmice to induce deletion of BACE1 after passing early developmental stages. Strikingly, sequential and increased deletion of BACE1 in an adult AD mouse model (5xFAD) was capable of completely reversing amyloid deposition. This reversal in amyloid deposition also resulted in significant improvement in gliosis and neuritic dystrophy. Moreover, synaptic functions, as determined by long-term potentiation and contextual fear conditioning experiments, were significantly improved, correlating with the reversal of amyloid plaques. Our results demonstrate that sustained and increasing BACE1 inhibition in adults can reverse amyloid deposition in an AD mouse model, and this observation will help to provide guidance for the proper use of BACE1 inhibitors in human patients.

Concepts: Alzheimer's disease, Better, Improve, Amyloid, Amyloidosis, Beta amyloid, Amyloid precursor protein, Reverse


The pathology of Alzheimer’s disease has an inflammatory component that is characterized by upregulation of proinflammatory cytokines, particularly in response to amyloid-β (Aβ). Using the APPPS1 Alzheimer’s disease mouse model, we found increased production of the common interleukin-12 (IL-12) and IL-23 subunit p40 by microglia. Genetic ablation of the IL-12/IL-23 signaling molecules p40, p35 or p19, in which deficiency of p40 or its receptor complex had the strongest effect, resulted in decreased cerebral amyloid load. Although deletion of IL-12/IL-23 signaling from the radiation-resistant glial compartment of the brain was most efficient in mitigating cerebral amyloidosis, peripheral administration of a neutralizing p40-specific antibody likewise resulted in a reduction of cerebral amyloid load in APPPS1 mice. Furthermore, intracerebroventricular delivery of antibodies to p40 significantly reduced the concentration of soluble Aβ species and reversed cognitive deficits in aged APPPS1 mice. The concentration of p40 was also increased in the cerebrospinal fluid of subjects with Alzheimer’s disease, which suggests that inhibition of the IL-12/IL-23 pathway may attenuate Alzheimer’s disease pathology and cognitive deficits.

Concepts: Inflammation, Neuron, Brain, Cytokine, Pathology, Cerebrospinal fluid, Amyloidosis, Beta amyloid


Misfolded and aggregated transthyretins (agTTR) contribute to neurodegenerative amyloid diseases such as familial amyloid polyneuropathy and senile systemic amyloidosis. The neurotoxicity mechanisms of agTTR, however, are not well understood. In the current study, the possible contribution of reactive nitrogen species (RNS) to such mechanisms was investigated by examining agTTR-mediated changes in cellular RNS levels.

Concepts: Diseases and disorders, Amyloid, Neurology, Amyloidosis, The Current, Familial amyloid polyneuropathy, Transthyretin, Senile systemic amyloidosis


The transthyretin amyloidoses (ATTR) are devastating diseases characterized by progressive neuropathy and/or cardiomyopathy for which novel therapeutic strategies are needed. We have recently shown that curcumin (diferuloylmethane), the major bioactive polyphenol of turmeric, strongly suppresses TTR fibril formation in vitro, either by stabilization of TTR tetramer or by generating nonfibrillar small intermediates that are innocuous to cultured neuronal cells. In the present study, we aim to assess the effect of curcumin on TTR amyloidogenesis in vivo, using a well characterized mouse model for familial amyloidotic polyneuropathy (FAP). Mice were given 2% (w/w) dietary curcumin or control diet for a six week period. Curcumin supplementation resulted in micromolar steady-state levels in plasma as determined by LC/MS/MS. We show that curcumin binds selectively to the TTR thyroxine-binding sites of the tetramer over all the other plasma proteins. The effect on plasma TTR stability was determined by isoelectric focusing (IEF) and curcumin was found to significantly increase TTR tetramer resistance to dissociation. Most importantly, immunohistochemistry (IHC) analysis of mice tissues demonstrated that curcumin reduced TTR load in as much as 70% and lowered cytotoxicity associated with TTR aggregation by decreasing activation of death receptor Fas/CD95, endoplasmic reticulum (ER) chaperone BiP and 3-nitrotyrosine in tissues. Taken together, our results highlight the potential use of curcumin as a lead molecule for the prevention and treatment of TTR amyloidosis.

Concepts: Protein, Endoplasmic reticulum, In vivo, Amyloid, In vitro, Amyloidosis, Transthyretin, Curcumin


Introduction: Information related to the long-term follow-up of neuropathy in patients with familial amyloid polyneuropathy after liver transplantation is still scarce. Methods: We describe the neuropathic features of 3 patients with the transthyretin Val30Met mutation. Each patient underwent liver transplantation at an early stage of neuropathy, as indicated by the absence of motor dysfunction and relative preservation of myelinated fibers in sural nerve biopsy specimens. Results: Although the patient with late-onset disease (at age 60 years) presented with the least amount of amyloid deposition, he had neuropathic progression after liver transplantation. An older early-onset (at age 40 years) patient reported a slight exacerbation of both somatic and autonomic neuropathic symptoms 10 years after transplantation. However, the younger early-onset (at age 28 years) patient did not exhibit characteristics suggestive of neuropathy 7 years after transplantation. Conclusion: Aging may determine the progression of neuropathy after liver transplantation. Muscle Nerve, 2012.

Concepts: Nervous system, Cancer, Patient, Amyloid, Amyloidosis, Familial amyloid polyneuropathy, Transthyretin, Sural nerve


The Nomenclature Committee of the International Society of Amyloidosis (ISA) met during the XIIIth International Symposium, May 6-10, 2012, Groningen, The Netherlands, to formulate recommendations on amyloid fibril protein nomenclature and to consider newly identified candidate amyloid fibril proteins for inclusion in the ISA Amyloid Fibril Protein Nomenclature List. The need to promote utilization of consistent and up to date terminology for both fibril chemistry and clinical classification of the resultant disease syndrome was emphasized. Amyloid fibril nomenclature is based on the chemical identity of the amyloid fibril forming protein; clinical classification of the amyloidosis should be as well. Although the importance of fibril chemistry to the disease process has been recognized for more than 40 years, to this day the literature contains clinical and histochemical designations that were used when the chemical diversity of amyloid diseases was poorly understood. Thus, the continued use of disease classifications such as familial amyloid neuropathy and familial amyloid cardiomyopathy generates confusion. An amyloid fibril protein is defined as follows: the protein must occur in body tissue deposits and exhibit both affinity for Congo red and green birefringence when Congo red stained deposits are viewed by polarization microscopy. Furthermore, the chemical identity of the protein must have been unambiguously characterized by protein sequence analysis when so is practically possible. Thus, in nearly all cases, it is insufficient to demonstrate mutation in the gene of a candidate amyloid protein; the protein itself must be identified as an amyloid fibril protein. Current ISA Amyloid Fibril Protein Nomenclature Lists of 30 human and 10 animal fibril proteins are provided together with a list of inclusion bodies that, although intracellular, exhibit some or all of the properties of the mainly extracellular amyloid fibrils.

Concepts: Protein, Cell membrane, Prion, Amyloid, Amyloidosis, Congo red, Birefringence, Peptide sequence