SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Amphetamine

192

Brain dopamine dysfunction in attention deficit/hyperactivity disorder (ADHD) could explain why stimulant medications, which increase dopamine signaling, are therapeutically beneficial. However while the acute increases in dopamine induced by stimulant medications have been associated with symptom improvement in ADHD the chronic effects have not been investigated.

Concepts: Dopamine receptor, Attention-deficit hyperactivity disorder, Hyperactivity, Stimulant, Dopamine, Methylphenidate, Amphetamine, Dopaminergic

179

Mephedrone (4-methylmethcathinone, MMC) is a popular recreational drug, yet its potential harms are yet to be fully established. The current study examined the impact of single or repeated MMC exposure on various neurochemical and behavioral measures in rats. In Experiment 1 male adolescent Wistar rats received single or repeated (once a day for 10 days) injections of MMC (30 mg/kg) or the comparator drug methamphetamine (METH, 2.5 mg/kg). Both MMC and METH caused robust hyperactivity in the 1 h following injection although this effect did not tend to sensitize with repeated treatment. Striatal dopamine (DA) levels were increased 1 h following either METH or MMC while striatal and hippocampal serotonin (5-HT) levels were decreased 1 h following MMC but not METH. MMC caused greater increases in 5-HT metabolism and greater reductions in DA metabolism in rats that had been previously exposed to MMC. Autoradiographic analysis showed no signs of neuroinflammation ([(125)I]CLINDE ligand used as a marker for translocator protein (TSPO) expression) with repeated exposure to either MMC or METH. In Experiment 2, rats received repeated MMC (7.5, 15 or 30 mg/kg once a day for 10 days) and were examined for residual behavioral effects following treatment. Repeated high (30 mg/kg) dose MMC produced impaired novel object recognition 5 weeks after drug treatment. However, no residual changes in 5-HT or DA tissue levels were observed at 7 weeks post-treatment. Overall these results show that MMC causes acute but not lasting changes in DA and 5-HT tissue concentrations. MMC can also cause long-term memory impairment. Future studies of cognitive function in MMC users are clearly warranted.

Concepts: Psychology, Causality, Cognition, Opioid, Amphetamine, Methamphetamine, MDMA, Recreational drug use

173

The drug 4-methylmethcathinone (4-MMC; aka, mephedrone, MMCAT, “plant food”, “bath salts”) is a recent addition to the list of popular recreational psychomotor-stimulant compounds. Relatively little information about this drug is available in the scientific literature, but popular media reports have driven recent drug control actions in the UK and several US States. Online user reports of subjective similarity to 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) prompted the current investigation of the thermoregulatory and locomotor effects of 4-MMC. Male Wistar and Sprague-Dawley rats were monitored after subcutaneous administration of 4-MMC (1-10 mg/kg ) using an implantable radiotelemetry system under conditions of low (23°C) and high (27°C) ambient temperature. A reliable reduction of body temperature was produced by 4-MMC in Wistar rats at 23°C or 27°C with only minimal effect in Sprague-Dawley rats. Increased locomotor activity was observed after 4-MMC administration in both strains with significantly more activity produced in the Sprague-Dawley strain. The 10 mg/kg s.c. dose evoked greater increase in extracellular serotonin, compared with dopamine, in the nucleus accumbens. Follow-up studies confirmed that the degree of locomotor stimulation produced by 10 mg/kg 4-MMC was nearly identical to that produced by 1 mg/kg d-methamphetamine in each strain. Furthermore, hypothermia produced by the serotonin 1(A/7) receptor agonist 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) was similar in each strain. These results show that the cathinone analog 4-MMC exhibits thermoregulatory and locomotor properties that are distinct from those established for methamphetamine or MDMA in prior work, despite recent evidence of neuropharmacological similarity with MDMA.

Concepts: Serotonin, Agonist, Dopamine, Amphetamine, Methamphetamine, MDMA, Designer drug, Mephedrone

169

BACKGROUND: Methylphenidate (MPH), a psycho-stimulant, is the most widely administered drug for the pharmacological management of patients with attention deficit hyperactivity disorder (ADHD). This study attempts to determine whether sustainable improvements occur in neurocognitive function among ADHD patients following 12-month treatment with MPH, at drug-free status. Whether age groups, gender or ADHD subtypes differ in neurocognitive performance during MPH treatment is also examined. METHODS: Study participants consisted of 103 ADHD patients (mean age: 9.1 +/- 1.9 years old) who were drug naive or drug free for at least 6 months. The patients were prescribed oral short-acting MPH at each dose range of 0.3–1.0 mg/kg daily. During 12 months of the study, the patients underwent the test of variables of attention (TOVA) at the baseline, month 6 and month12. Patients were instructed to not intake MPH for one week before the second and the third TOVA. RESULTS: Seventy five patients completed the study. Results of this study indicated that although commission errors and response sensitivity (d') significantly improved during MPH treatment for 12 months, omission errors, response time, response time variability and ADHD score did not. While younger ADHD patients (<9y/o) performed better in response time, response time variability, d' and ADHD score than older ones (>=9y/o), the latter more significantly improved in response time than the former during 12 months of treatment. Additionally, boys improved more than girls in omission error and d'. Moreover, although ADHD subtypes significantly differed in ADHD score during the treatment, MPH treatment and ADHD subtypes did not interact with each other for all TOVA indices. CONCLUSIONS: ADHD patients significantly improved in impulsivity and perceptual sensitivity, determined as TOVA, during MPH treatment for 12 months. Age and gender, yet not ADHD subtypes, appear to influence the MPH treatment effects in some indices of TOVA. A future study containing a comparison group is suggested to confirm whether the neurocognitive improvements are attributed to long-term effects of MPH or natural maturation of patients.

Concepts: Attention, Attention-deficit hyperactivity disorder, Hyperactivity, ADHD predominantly inattentive, Dopamine, Methylphenidate, Amphetamine

165

In previous studies, we found a strong reduction in contrast perception and retinal contrast gain in patients with major depression, which normalized after remission of depression. We also identified a possible role of the dopaminergic system in this effect, because visual contrast perception depends on dopaminergic neurotransmission. Dopamine is also known to play an important role in the pathogenesis of attention deficit hyperactivity disorder (ADHD). Therefore, in order to explore the specificity of retinal contrast gain as a marker of depression in comparison with other psychiatric diseases, we recorded the pattern electroretinogram (PERG) in patients with ADHD. Twenty patients diagnosed with ADHD and 20 matched healthy subjects were studied. Visual pattern electroretinograms were recorded from both eyes. The contrast gain of the patients with attention deficit disorder (ADD) did not differ from the control group, nor did the contrast gain of any ADHD subgroup (predominantly inattentive or combined patients). In the healthy subjects, a significant correlation between depression score and contrast gain was found. As the contrast gain in an earlier study clearly separated the patients with depression from the controls, we assume that retinal contrast gain might be a specific marker in depression.

Concepts: Attention-deficit hyperactivity disorder, Hyperactivity, ADHD predominantly inattentive, Major depressive disorder, Dopamine, Methylphenidate, Amphetamine, Dopaminergic

57

The biological mechanisms underlying long-term partner bonds in humans are unclear. The evolutionarily conserved neuropeptide oxytocin (OXT) is associated with the formation of partner bonds in some species via interactions with brain dopamine reward systems. However, whether it plays a similar role in humans has as yet not been established. Here, we report the results of a discovery and a replication study, each involving a double-blind, placebo-controlled, within-subject, pharmaco-functional MRI experiment with 20 heterosexual pair-bonded male volunteers. In both experiments, intranasal OXT treatment (24 IU) made subjects perceive their female partner’s face as more attractive compared with unfamiliar women but had no effect on the attractiveness of other familiar women. This enhanced positive partner bias was paralleled by an increased response to partner stimuli compared with unfamiliar women in brain reward regions including the ventral tegmental area and the nucleus accumbens (NAcc). In the left NAcc, OXT even augmented the neural response to the partner compared with a familiar woman, indicating that this finding is partner-bond specific rather than due to familiarity. Taken together, our results suggest that OXT could contribute to romantic bonds in men by enhancing their partner’s attractiveness and reward value compared with other women.

Concepts: Ventral tegmental area, Female, Basal ganglia, Dopamine, Mesolimbic pathway, Nucleus accumbens, Amphetamine, Reward system

56

Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses.

Concepts: Scientific method, Environment, Natural environment, Neurotransmitter, Dopamine, Norepinephrine, Amphetamine, Bayesian probability

49

The manufacture of methamphetamine in clandestine drug laboratories occurs in various locations, including residential houses and apartments. Unlike the controlled manufacture of chemicals and drugs, clandestine manufacture results in the uncontrolled storage, use, generation, and disposal of a wide range of chemicals and the deposit of methamphetamine drug residues on indoor surfaces (1). These residues have been found at high levels on porous and nonporous surfaces and have been shown to persist for months to years (1). Persons exposed to these environments often have poorly defined exposures and health effects. It is commonly assumed that these levels of exposure are low compared with those related to illicit drug use or therapeutic use of amphetamine-based drugs for managing behavioral issues such as attention deficit hyperactivity disorder (2). In 2015, a family that was unknowingly exposed to methamphetamine residues in a house in Australia was found to have adverse health effects and elevated methamphetamine levels in hair samples, highlighting the potential for public health risks for persons who might live in methamphetamine-contaminated dwellings. This case study highlights the importance of the identification and effective decontamination of former clandestine drug laboratories.

Concepts: Attention, Drug addiction, Attention-deficit hyperactivity disorder, Hyperactivity, Amphetamine, MDMA, Clandestine chemistry, Illegal drug trade

43

Humans devote 30-40% of speech output solely to informing others of their own subjective experiences. What drives this propensity for disclosure? Here, we test recent theories that individuals place high subjective value on opportunities to communicate their thoughts and feelings to others and that doing so engages neural and cognitive mechanisms associated with reward. Five studies provided support for this hypothesis. Self-disclosure was strongly associated with increased activation in brain regions that form the mesolimbic dopamine system, including the nucleus accumbens and ventral tegmental area. Moreover, individuals were willing to forgo money to disclose about the self. Two additional studies demonstrated that these effects stemmed from the independent value that individuals placed on self-referential thought and on simply sharing information with others. Together, these findings suggest that the human tendency to convey information about personal experience may arise from the intrinsic value associated with self-disclosure.

Concepts: Psychology, Ventral tegmental area, Basal ganglia, Striatum, Dopamine, Mesolimbic pathway, Nucleus accumbens, Amphetamine

41

Here, we extended our findings from a genome-wide association study of the euphoric response to d-amphetamine in healthy human volunteers by identifying enrichment between SNPs associated with response to d-amphetamine and SNPs associated with psychiatric disorders. We found that SNPs nominally associated (P ≤ 0.05 and P ≤ 0.01) with schizophrenia and attention deficit hyperactivity disorder were also nominally associated with d-amphetamine response. Furthermore, we found that the source of this enrichment was an excess of alleles that increased sensitivity to the euphoric effects of d-amphetamine and decreased susceptibility to schizophrenia and attention deficit hyperactivity disorder. In contrast, three negative control phenotypes (height, inflammatory bowel disease, and Parkinson disease) did not show this enrichment. Taken together, our results suggest that alleles identified using an acute challenge with a dopaminergic drug in healthy individuals can be used to identify alleles that confer risk for psychiatric disorders commonly treated with dopaminergic agonists and antagonists. More importantly, our results show the use of the enrichment approach as an alternative to stringent standards for genome-wide significance and suggest a relatively novel approach to the analysis of small cohorts in which intermediate phenotypes have been measured.

Concepts: Genetics, Attention-deficit hyperactivity disorder, Hyperactivity, Mental disorder, Dopamine, Methylphenidate, Amphetamine, Attention-deficit hyperactivity disorder controversies