Discover the most talked about and latest scientific content & concepts.

Concept: Amino acid


The purpose of this review was to determine whether past research provides conclusive evidence about the effects of type and timing of ingestion of specific sources of protein by those engaged in resistance weight training. Two essential, nutrition-related, tenets need to be followed by weightlifters to maximize muscle hypertrophy: the consumption of 1.2-2.0 g -1 of body weight, and >=44-50 of body weight. Researchers have tested the effects of timing of protein supplement ingestion on various physical changes in weightlifters. In general, protein supplementation pre- and post-workout increases physical performance, training session recovery, lean body mass, muscle hypertrophy, and strength. Specific gains, differ however based on protein type and amounts. Studies on timing of consumption of milk have indicated that fat-free milk post-workout was effective in promoting increases in lean body mass, strength, muscle hypertrophy and decreases in body fat. The leucine content of a protein source has an impact on protein synthesis, and affects muscle hypertrophy. Consumption of 3–4 g of leucine is needed to promote maximum protein synthesis. An ideal supplement following resistance exercise should contain whey protein that provides at least 3 g of leucine per serving. A combination of a fast-acting carbohydrate source such as maltodextrin or glucose should be consumed with the protein source, as leucine cannot modulate protein synthesis as effectively without the presence of insulin. Such a supplement post-workout would be most effective in increasing muscle protein synthesis, resulting in greater muscle hypertrophy and strength. In contrast, the consumption of essential amino acids and dextrose appears to be most effective at evoking protein synthesis prior to rather than following resistance exercise. To further enhance muscle hypertrophy and strength, a resistance weight- training program of at least 10–12 weeks with compound movements for both upper and lower body exercises should be followed.

Concepts: Protein, Amino acid, Glucose, Muscle, Physical exercise, Strength training, Exercise physiology, Bodybuilding


Insect pheromones offer potential for managing pests of crop plants. Volatility and instability are problems for deployment in agriculture but could be solved by expressing genes for the biosynthesis of pheromones in the crop plants. This has now been achieved by genetically engineering a hexaploid variety of wheat to release (E)-β-farnesene (Eβf), the alarm pheromone for many pest aphids, using a synthetic gene based on a sequence from peppermint with a plastid targeting amino acid sequence, with or without a gene for biosynthesis of the precursor farnesyl diphosphate. Pure Eβf was produced in stably transformed wheat lines with no other detectable phenotype but requiring targeting of the gene produced to the plastid. In laboratory behavioural assays, three species of cereal aphids were repelled and foraging was increased for a parasitic natural enemy. Although these studies show considerable potential for aphid control, field trials employing the single and double constructs showed no reduction in aphids or increase in parasitism. Insect numbers were low and climatic conditions erratic suggesting the need for further trials or a closer imitation, in the plant, of alarm pheromone release.

Concepts: DNA, Protein, Gene, Bacteria, Evolution, Amino acid, Insect, Ant


More than 2 million people in the United States have myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We performed targeted, broad-spectrum metabolomics to gain insights into the biology of CFS. We studied a total of 84 subjects using these methods. Forty-five subjects (n = 22 men and 23 women) met diagnostic criteria for ME/CFS by Institute of Medicine, Canadian, and Fukuda criteria. Thirty-nine subjects (n = 18 men and 21 women) were age- and sex-matched normal controls. Males with CFS were 53 (±2.8) y old (mean ± SEM; range, 21-67 y). Females were 52 (±2.5) y old (range, 20-67 y). The Karnofsky performance scores were 62 (±3.2) for males and 54 (±3.3) for females. We targeted 612 metabolites in plasma from 63 biochemical pathways by hydrophilic interaction liquid chromatography, electrospray ionization, and tandem mass spectrometry in a single-injection method. Patients with CFS showed abnormalities in 20 metabolic pathways. Eighty percent of the diagnostic metabolites were decreased, consistent with a hypometabolic syndrome. Pathway abnormalities included sphingolipid, phospholipid, purine, cholesterol, microbiome, pyrroline-5-carboxylate, riboflavin, branch chain amino acid, peroxisomal, and mitochondrial metabolism. Area under the receiver operator characteristic curve analysis showed diagnostic accuracies of 94% [95% confidence interval (CI), 84-100%] in males using eight metabolites and 96% (95% CI, 86-100%) in females using 13 metabolites. Our data show that despite the heterogeneity of factors leading to CFS, the cellular metabolic response in patients was homogeneous, statistically robust, and chemically similar to the evolutionarily conserved persistence response to environmental stress known as dauer.

Concepts: Protein, Amino acid, Metabolism, Adenosine triphosphate, Mass spectrometry, Biochemistry, Metabolic pathway, Chronic fatigue syndrome


Gastrointestinal disturbances are among symptoms commonly reported by individuals diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). However, whether ME/CFS is associated with an altered microbiome has remained uncertain. Here, we profiled gut microbial diversity by sequencing 16S ribosomal ribonucleic acid (rRNA) genes from stool as well as inflammatory markers from serum for cases (n = 48) and controls (n = 39). We also examined a set of inflammatory markers in blood: C-reactive protein (CRP), intestinal fatty acid-binding protein (I-FABP), lipopolysaccharide (LPS), LPS-binding protein (LBP), and soluble CD14 (sCD14).

Concepts: Protein, Gene, Bacteria, Amino acid, RNA, Ribosomal RNA, Ribosome, C-reactive protein


Murine noroviruses have emerged as a valuable tool for investigating the molecular basis of infection and pathogenesis of the closely related human noroviruses, which are the major cause of non-bacterial gastroenteritis. The replication of noroviruses relies on the proteolytic processing of a large polyprotein precursor into six non-structural proteins (NS1-2, NS3, NS4, NS5, NS6(pro), NS7(pol)) by the virally-encoded NS6 protease. We report here the crystal structure of MNV NS6(pro), which has been determined to a resolution of 1.6 Å. Adventitiously, the crystal contacts are mediated in part by the binding of the C-terminus of NS6(pro) within the peptide-binding cleft of a neighbouring molecule. This insertion occurs for both molecules in the asymmetric unit of the crystal in a manner that is consistent with physiologically-relevant binding, thereby providing two independent views of a protease-peptide complex. Since the NS6(pro) C-terminus is formed in vivo by NS6(pro) processing, these crystal contacts replicate the protease-product complex that is formed immediately following cleavage of the peptide bond at the NS6-NS7 junction. The observed mode of binding of the C-terminal product peptide yields new insights into the structural basis of NS6(pro) specificity.

Concepts: Scientific method, Protein, Amino acid, Crystal, Molecule, Atom, Norovirus, Mineralogy


The enantioselective allylation of ketones is a problem of fundamental importance in asymmetric reaction design, especially given that only a very small number of methods can generate tertiary carbinols. Despite the vast amount of attention that synthetic chemists have given to this problem, success has generally been limited to just a few simple ketone types. A method for the selective allylation of functionally complex ketones would greatly increase the utility of ketone allylation methods in the chemical synthesis of important targets. Here we describe the operationally simple, direct, regioselective and enantioselective allylation of β-diketones. The strong tendency of β-diketones to act as nucleophilic species was overcome by using their enol form to provide the necessary Brønsted-acid activation. This reaction significantly expands the pool of enantiomerically enriched and functionally complex tertiary carbinols that may be easily accessed. It also overturns more than a century of received wisdom regarding the reactivity of β-diketones.

Concepts: Amino acid, Chemical reaction, Chemical synthesis, Carbonyl, Asymmetric induction, Asymmetric synthesis, Enantiomeric excess, Keto-enol tautomerism


Here, we present LNCipedia (, a novel database for human long non-coding RNA (lncRNA) transcripts and genes. LncRNAs constitute a large and diverse class of non-coding RNA genes. Although several lncRNAs have been functionally annotated, the majority remains to be characterized. Different high-throughput methods to identify new lncRNAs (including RNA sequencing and annotation of chromatin-state maps) have been applied in various studies resulting in multiple unrelated lncRNA data sets. LNCipedia offers 21 488 annotated human lncRNA transcripts obtained from different sources. In addition to basic transcript information and gene structure, several statistics are determined for each entry in the database, such as secondary structure information, protein coding potential and microRNA binding sites. Our analyses suggest that, much like microRNAs, many lncRNAs have a significant secondary structure, in-line with their presumed association with proteins or protein complexes. Available literature on specific lncRNAs is linked, and users or authors can submit articles through a web interface. Protein coding potential is assessed by two different prediction algorithms: Coding Potential Calculator and HMMER. In addition, a novel strategy has been integrated for detecting potentially coding lncRNAs by automatically re-analysing the large body of publicly available mass spectrometry data in the PRIDE database. LNCipedia is publicly available and allows users to query and download lncRNA sequences and structures based on different search criteria. The database may serve as a resource to initiate small- and large-scale lncRNA studies. As an example, the LNCipedia content was used to develop a custom microarray for expression profiling of all available lncRNAs.

Concepts: DNA, Protein, Gene, Transcription, Amino acid, Molecular biology, RNA, Non-coding RNA


BACKGROUND: Excess adipose tissue and sarcopenia presents a multifaceted clinical challenge that promotes morbidity and mortality in the obese, elderly population. Unfortunately, the mortality risks of muscle loss may outweigh the potential benefits of weight loss in the elderly. We have previously demonstrated the effectiveness of whey protein and essential amino acids towards the preservation of lean tissue, even under the conditions of strict bedrest in the elderly. METHODS: In the context of caloric restriction-based weight loss, we hypothesized that a similar formulation given a meal replacement (EAAMR) would foster the retention of lean tissue through an increase in the skeletal muscle fractional synthesis rate (FSR). We also proposed that EAAMR would promote the preferential loss of adipose tissue through the increased energy cost of skeletal muscle FSR. We recruited and randomized 12 elderly individual to an 8 week, caloric restriction diet utilizing equivalent caloric meal replacements (800 kcal/day): 1) EAAMR or a 2) competitive meal replacement (CMR) in conjunction with 400 kcal of solid food that totaled 1200 kcal/day designed to induce 7% weight loss. Combined with weekly measurements of total body weight and body composition, we also measured the acute change in the skeletal muscle FSR to EAAMR and CMR. RESULTS: By design, both groups lost ~7% of total body weight. While EAAMR did not promote a significant preservation of lean tissue, the reduction in adipose tissue was greater in EAAMR compared to CMR. Interestingly, these results corresponded to an increase in the acute skeletal muscle protein FSR. CONCLUSION: The provision of EAAMR during caloric restriction-induced weight loss promotes the preferential reduction of adipose tissue and the modest loss of lean tissue in the elderly population.

Concepts: Protein, Amino acid, Metabolism, Nutrition, Obesity, Muscle, Adipose tissue, Essential amino acid


The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center.

Concepts: Protein, Bacteria, Amino acid, Ribosome, Messenger RNA, Protein biosynthesis, Chloramphenicol, Peptidyl transferase


ω-3 fatty acid desaturase is a key enzyme for the biosynthesis of ω-3 polyunsaturated fatty acids via the oxidative desaturase/elongase pathways. Here we report the identification of three ω-3 desaturases from oomycetes, Pythium aphanidermatum, Phytophthora sojae, and Phytophthora ramorum. These new ω-3 desaturases share 55 % identity at the amino acid level with the known Δ-17 desaturase of Saprolegnia diclina, and about 31 % identity with the bifunctional Δ-12/Δ-15 desaturase of Fusarium monoliforme. The three enzymes were expressed in either wild-type or codon optimized form in an engineered arachidonic acid producing strain of Yarrowia lipolytica to study their activity and substrate specificity. All three were able to convert the ω-6 arachidonic acid to the ω-3 eicosapentanoic acid, with a substrate conversion efficiency of 54-65 %. These enzymes have a broad ω-6 fatty acid substrate spectrum, including both C18 and C20 ω-6 fatty acids although they prefer the C20 substrates, and have strong Δ-17 desaturase activity but weaker Δ-15 desaturase activity. Thus, they belong to the Δ-17 desaturase class. Unlike the previously identified bifunctional Δ-12/Δ-15 desaturase from F. monoliforme, they lack Δ-12 desaturase activity. The newly identified Δ-17 desaturases could use fatty acids in both acyl-CoA and phospholipid fraction as substrates. The identification of these Δ-17 desaturases provides a set of powerful new tools for genetic engineering of microbes and plants to produce ω-3 fatty acids, such as eicosapentanoic acid and docosahexanoic acid, at high levels.

Concepts: Amino acid, Nutrition, Fatty acid, Enzyme, Fatty acids, Essential fatty acid, Docosahexaenoic acid, Water moulds