SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Aluminium nitride

167

We report an enhancement in light emission efficiency of Si nanocrystal (NC) light-emitting diodes (LEDs) by employing 5.5 periods of SiCN/SiC superlattices (SLs). SiCN and SiC layers in SiCN/SiC SLs were designed by considering the optical bandgap to induce the uniform electron sheet parallel to the SL planes. The electrical property of Si NC LED with SiCN/SiC SLs was improved. In addition, light output power and wall-plug efficiency of the Si NC LED with SiCN/SiC SLs were also enhanced by 50% and 40%, respectively. This was attributed to both the formation of two-dimensional electron gas, i.e., uniform electron sheet parallel to the SiCN/SiC SL planes due to the conduction band offset between the SiCN layer and SiC layer, and an enhanced electron transport into the Si NCs due to a lower tunneling barrier height. We show here that the use of the SiCN/SiC SL structure can be very useful in realizing a highly efficient Si NC LED.

Concepts: Quantum dot, Semiconductor, Light-emitting diode, Lighting, Diode, Luminous efficacy, Aluminium nitride, LED lamp

162

We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized in this superlattice. In particular, the Dirac cone of silicene is preserved. Due to the wide band gap of hexagonal boron nitride, the superlattice realizes the characteristic physical phenomena of free-standing silicene. In particular, we address by model calculations the combined effect of the intrinsic spin-orbit coupling and an external electric field, which induces a transition from a semimetal to a topological insulator and further to a band insulator.

Concepts: Magnetic field, Mathematics, Fundamental physics concepts, Condensed matter physics, Band gap, Philosophical terminology, Boron nitride, Aluminium nitride

30

Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature, whereas an atomically thin layer of h-BN is a dielectric with a wide bandgap of ∼5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be seamlessly stitched together, hybrid atomic layers with interesting electronic applications could be created. Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size ranging from tens of nanometres to millimetres. The resulting graphene/h-BN atomic layers can be peeled off the growth substrate and transferred to various platforms including flexible substrates. We also show that the technique can be used to fabricate two-dimensional devices, such as a split closed-loop resonator that works as a bandpass filter.

Concepts: Crystal, Semiconductor, Solid, Crystal system, Filter, Band-pass filter, Boron nitride, Aluminium nitride

28

Chemical functionalization of the boron nitride nanotube (BNNT) allows a wider flexibility in engineering its electronic and magnetic properties as well as chemical reactivity, thus making it have potential applications in many fields. In the present work, the encapsulation of 13 different Pd(3)M (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, Pt, and Au) clusters inside the (10, 0) BNNT has been studied by performing comprehensive density functional theory (DFT) calculations. Particular attention is paid to searching for the stable configurations, calculating the corresponding binding energies, and evaluating the effects of the encapsulation of Pd(3)M cluster on the electronic and magnetic properties of BNNT. The results indicate that all the studied Pd(3)M clusters can be stably encapsulated inside the (10, 0) BNNT, with binding energies ranging from -0.96 (for Pd(3)Sc) to -5.31 eV (for Pd(3)V). Moreover, due to a certain amount of charge transfer from Pd(3)M clusters to BNNT, certain impurity states are induced within the band gap of pristine BNNT, leading to the reduction of the band gap in various ways. Most Pd(3)M@BNNT nanocomposites exhibit nonzero magnetic moments, which mainly originate from the contribution of the Pd(3)M clusters. In particular, the adsorption of O(2) molecule on BNNT is greatly enhanced due to Pd(3)M encapsulation. The elongation of O-O bonds of the adsorbed O(2) molecules indicates that Pd(3)M@BNNT could be used to fabricate the oxidative catalysis.

Concepts: Chemical reaction, Hydrogen, Molecule, Kinetic energy, Density functional theory, Trigraph, Boron nitride, Aluminium nitride

26

Phase stability limit of cubic boron nitride (c-BN) has been investigated by the crystal structure search technique. It indicated that this limit is ∼1000 GPa at hydrostatic pressure condition. Above this pressure, c-BN turns into a metastable phase with respect to rocksalt type boron nitride (rs-BN). However, rs-BN cannot be retained at 0 GPa owing to its instability at pressure below 250 GPa. For non-hydrostatic pressure conditions, the phase stability limit of c-BN is substantially lower than that under hydrostatic pressure conditions and it is also dramatically different for other pressure mode.

Concepts: Crystallography, Pressure, Diamond, Boron, Boron nitride, Aluminium nitride, Borazon, Heterodiamond

23

Boron nitride nanotubes (BNNTs) and hexagonal boron nitrides (hBNs) are novel nanostructures with high mechanical strengths, large surface areas and excellent biocompatibilities. Here, the potential use of BNNTs and hBNs as nanocarriers was comparatively investigated for use with cancer drugs.

Concepts: Area, Surface area, Boron, Boron nitride, Aluminium nitride, Nitride, Nitrides

7

The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices and so on. Here, we take the complexity and functionality of such van der Waals heterostructures to the next level by introducing quantum wells (QWs) engineered with one atomic plane precision. We describe light-emitting diodes (LEDs) made by stacking metallic graphene, insulating hexagonal boron nitride and various semiconducting monolayers into complex but carefully designed sequences. Our first devices already exhibit an extrinsic quantum efficiency of nearly 10% and the emission can be tuned over a wide range of frequencies by appropriately choosing and combining 2D semiconductors (monolayers of transition metal dichalcogenides). By preparing the heterostructures on elastic and transparent substrates, we show that they can also provide the basis for flexible and semi-transparent electronics. The range of functionalities for the demonstrated heterostructures is expected to grow further on increasing the number of available 2D crystals and improving their electronic quality.

Concepts: Quantum dot, Gallium arsenide, Semiconductor, Light-emitting diode, Diode, Electronics, Boron nitride, Aluminium nitride

5

The spectrum of two-dimensional (2D) and layered materials ‘beyond graphene’ offers a remarkable platform to study new phenomena in condensed matter physics. Among these materials, layered hexagonal boron nitride (hBN), with its wide bandgap energy (∼5.0-6.0 eV), has clearly established that 2D nitrides are key to advancing 2D devices. A gap, however, remains between the theoretical prediction of 2D nitrides ‘beyond hBN’ and experimental realization of such structures. Here we demonstrate the synthesis of 2D gallium nitride (GaN) via a migration-enhanced encapsulated growth (MEEG) technique utilizing epitaxial graphene. We theoretically predict and experimentally validate that the atomic structure of 2D GaN grown via MEEG is notably different from reported theory. Moreover, we establish that graphene plays a critical role in stabilizing the direct-bandgap (nearly 5.0 eV), 2D buckled structure. Our results provide a foundation for discovery and stabilization of 2D nitrides that are difficult to prepare via traditional synthesis.

Concepts: Physics, Condensed matter physics, Chemistry, Band gap, Gallium nitride, Boron nitride, Aluminium nitride, Nitrides

4

Wide bandgap semiconductors such as gallium nitride (GaN) exhibit persistent photoconductivity properties. The incorporation of this asset into the fabrication of a unique biointerface is presented. Templates with lithographically defined regions with controlled roughness are generated during the semiconductor growth process. Template surface functional groups are varied using a benchtop surface functionalization procedure. The conductivity of the template is altered by exposure to UV light and the behavior of PC12 cells is mapped under different substrate conductivity. The pattern size and roughness are combined with surface chemistry to change the adhesion of PC12 cells when the GaN is made more conductive after UV light exposure. Furthermore, during neurite outgrowth, surface chemistry and initial conductivity difference are used to facilitate the extension to smoother areas on the GaN surface. These results can be utilized for unique bioelectronics interfaces to probe and control cellular behavior.

Concepts: Gallium arsenide, Semiconductor, Electrical conductivity, Zinc oxide, Surface modification, Semiconductors, Gallium nitride, Aluminium nitride

4

Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices.

Concepts: Electron, Photon, Energy, Optics, Light-emitting diode, Diode, Boron nitride, Aluminium nitride