Discover the most talked about and latest scientific content & concepts.

Concept: Alpha helix


The recent elucidation of the X-ray structure of several class A GPCRs clearly indicates that the amphipathic helix 8 (H8) is a conserved structural domain in most crystallized GPCRs. Very little is known about the presence and the possible role of an analogous H8 domain in the distantly related class C GPCRs. In this study, we investigated the structural properties for the H8 domain of the mGluR2 receptor, a class C GPCR, by applying extended molecular dynamics simulations. Our study indicates that the amphipathic H8 adopts membrane-sensitive conformational states, which depend on the membrane composition. Cholesterol-rich membranes stabilize the helical structure of H8 whereas cholesterol-depleted membranes induce a disruption of H8. The observed link between membrane cholesterol levels and H8 conformational states suggests that H8 behaves as a sensor of cholesterol concentration.

Concepts: Protein structure, Cell membrane, Receptor, Membrane biology, Metabotropic glutamate receptor, X-ray crystallography, Knowledge, Alpha helix


Dynamic tracking of human sperms across a large volume is a challenging task. To provide a high-throughput solution to this important need, here we describe a lensfree on-chip imaging technique that can track the three-dimensional (3D) trajectories of > 1,500 individual human sperms within an observation volume of approximately 8-17 mm(3). This computational imaging platform relies on holographic lensfree shadows of sperms that are simultaneously acquired at two different wavelengths, emanating from two partially-coherent sources that are placed at 45° with respect to each other. This multiangle and multicolor illumination scheme permits us to dynamically track the 3D motion of human sperms across a field-of-view of > 17 mm(2) and depth-of-field of approximately 0.5-1 mm with submicron positioning accuracy. The large statistics provided by this lensfree imaging platform revealed that only approximately 4-5% of the motile human sperms swim along well-defined helices and that this percentage can be significantly suppressed under seminal plasma. Furthermore, among these observed helical human sperms, a significant majority (approximately 90%) preferred right-handed helices over left-handed ones, with a helix radius of approximately 0.5-3 μm, a helical rotation speed of approximately 3-20 rotations/s and a linear speed of approximately 20-100 μm/s. This high-throughput 3D imaging platform could in general be quite valuable for observing the statistical swimming patterns of various other microorganisms, leading to new insights in their 3D motion and the underlying biophysics.

Concepts: Scientific method, Sperm, Observation, Spermatozoon, Semen, Helix, Alpha helix, Helices


Maturation of HIV-1 particles encompasses a complex morphological transformation of Gag via an orchestrated series of proteolytic cleavage events. A longstanding question concerns the structure of the C-terminal region of CA and the peptide SP1 (CA-SP1), which represents an intermediate during maturation of the HIV-1 virus. By integrating NMR, cryo-EM, and molecular dynamics simulations, we show that in CA-SP1 tubes assembled in vitro, which represent the features of an intermediate assembly state during maturation, the SP1 peptide exists in a dynamic helix-coil equilibrium, and that the addition of the maturation inhibitors Bevirimat and DFH-055 causes stabilization of a helical form of SP1. Moreover, the maturation-arresting SP1 mutation T8I also induces helical structure in SP1 and further global dynamical and conformational changes in CA. Overall, our results show that dynamics of CA and SP1 are critical for orderly HIV-1 maturation and that small molecules can inhibit maturation by perturbing molecular motions.

Concepts: DNA, Protein, Protein structure, Molecular dynamics, Computational chemistry, Enzyme inhibitor, Dynamics, Alpha helix


The helical structure is experimentally determined by circular dichroism (CD) spectra. The sign and shape of the CD spectra are different between B-DNA with a right-handed double-helical structure and Z-DNA with a left-handed double-helical structure. In particular, the sign at around 295 nm in CD spectra is positive for B-DNA, which is opposite to that of Z-DNA. However, it is difficult to determine the helical structure from the UV absorption spectra. Three important factors that affect the CD spectra of DNA are 1) the conformation of dG monomer, 2) the hydrogen-bonding interaction between two helices and 3) the stacking interaction between nucleic acid bases. We calculated the CD spectra of 1) the dG monomer at different conformations, 2) the composite of dG and dC monomers, 3) two dimer models that simulate separately the hydrogen-bonding interaction and the stacking interaction and 4) the tetramer model that includes both hydrogen-bonding and stacking interactions simultaneously. The helical structure of DNA can be clarified by a comparison of the experimental and SAC-CI theoretical CD spectra of DNA and that the sign at around 295 nm of the CD spectra of Z-DNA reflects from the strong stacking interaction characteristic of its helical structure.

Concepts: DNA, Protein, Nucleic acid, Monomer, Double helix, Circular dichroism, Alpha helix, Helices


Collagen-nanoparticle interactions are vital for many biomedical applications including drug delivery and tissue engineering applications. Iron oxide nanoparticles synthesized using starch template according to our earlier reported procedures were functionalized by treating them with Gum Arabic (GA), a biocompatible polysaccharide, so as to enhance the interaction between nanoparticle surfaces and collagen. Viscosity, circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) techniques have been used to study the collagen-nanoparticle interactions. The relative viscosity for collagen-nanoparticle conjugate was found to increase with increase in concentration of the nanoparticle within the concentration range investigated, which is due to the aggregation of protein onto the surface of nanoparticle. The CD spectra for the collagen-nanoparticle at different concentration ratios do not have much variation in the Rpn values (ratio of positive peak intensity over negative peak intensity) after functionalization with GA. The variation of molar ellipticity values for collagen-nanoparticle is due to the glycoprotein present in GA. The collagen triple helical structure is maintained after interaction with nanoparticles. The FTIR spectra of native collagen, Coll-Fs (nanoparticle without functionalization) and Coll-FsG (nanoparticle functionalized with GA) show clearly the amide I, II, III bands, with respect to collagen. The ability of polysaccharide stabilized/functionalized nanoparticles to maintain the collagen properties would help in its biomedical applications.

Concepts: Protein, Spectroscopy, Ultraviolet, Fourier transform, Infrared spectroscopy, Fourier transform spectroscopy, Circular dichroism, Alpha helix


Membrane-Proximal Ectodomain Region (MPER) of HIV-1 gp41 is known to have several epitopes of monoclonal antibodies. It also plays an important role in the membrane fusion process that is well-evidenced, though not well-elucidated. There are also disputes over the true structure of MPER. In this study, MPER NMR structure in the presence of DPC micelle is used in the molecular dynamic (MD) simulation to elucidate structural dynamics and adsorption to model MPER interaction in a membrane environment. Polarized protein-specific charge (PPC) derived from its NMR structure is found to better preserve the helical structure found in the NMR structure compared to AMBER03 calculation. The preserved helical structure also adsorb to the micelle using the hydrophobic side-chains, consistent to the NMR structure. Ab initio folding of MPER predicts a structure quite in well agreement with the NMR structure (RMSd 3.9 Å) and shows that the micelle plays a role in the folding process. Proteins 2013. © 2013 Wiley Periodicals, Inc.

Concepts: Immune system, Antibody, Structure, Adsorption, Ab initio, Dynamics, Alpha helix, Preserve


The k-turn is a widespread structural motif that introduces a tight kink into the helical axis of double-stranded RNA. The adenine bases of consecutive G•A pairs are directed toward the minor groove of the opposing helix, hydrogen bonding in a typical A-minor interaction. We show here that the available structures of k-turns divide into two classes, depending on whether N3 or N1 of the adenine at the 2b position accepts a hydrogen bond from the O2' at the -1n position. There is a coordinated structural change involving a number of hydrogen bonds between the two classes. We show here that Kt-7 can adopt either the N3 or N1 structures depending on environment. While it has the N1 structure in the ribosome, on engineering it into the SAM-I riboswitch, it changes to the N3 structure, resulting in a significant alteration in the trajectory of the helical arms.

Concepts: DNA, Protein, Oxygen, RNA, Secondary structure, Hydrogen, Covalent bond, Alpha helix


Binding interaction of human serum albumin (HSA) with allura red AC, a food colourant, was investigated at the molecular level through fluorescence, ultraviolet-visible, circular dichroism (CD) and Raman spectroscopies, as well as protein-ligand docking studies to better understand the chemical absorption, distribution and transportation of colourants. Results show that allura red AC has the ability to quench the intrinsic fluorescence of HSA through static quenching. The negative values of the thermodynamic parameters ΔG, ΔH, and ΔS indicated that hydrogen bond and van der Waals forces are dominant in the binding between the food colourant and HSA. The CD and Raman spectra showed that the binding of allura red AC to HSA induces the rearrangement of the carbonyl hydrogen-bonding network of polypeptides, which changes the HSA secondary structure. This colourant is bound to HSA in site I, and the binding mode was further analysed with the use of the CDOCKER algorithm in Discovery Studio.

Concepts: Protein, Oxygen, Secondary structure, Van der Waals force, Hydrogen bond, Circular dichroism, Alpha helix, Allura Red AC


All residues in an alpha helix can be characterized and dispositioned on a 2D the wenxiang diagram, which possesses the following features: (1) the relative locations of the amino acids in the α-helix can be clearly displayed regardless how long it is; (2) direction of an alpha-helix can be indicated; and (3) more information regarding each of the constituent amino acid residues in an alpha helix. Owing to its intuitionism and easy visibility, wenxiang diagrams have had an immense influence on our understanding of protein structure, protein-protein interactions, and the effect of helical structural stability on protein conformational transitions. In this review, we summarize two recent applications of wenxiang diagrams incorporating NMR spectroscopy in the researches of the coiled-coil protein interactions related to the regulation of contraction or relaxation states of vascular smooth muscle cells, and the effects of α-helical stability on the protein misfolding in prion disease, in hopes that the gained valuable information through these studies can stimulate more and more widely applications of wenxiang diagrams in structural biology.

Concepts: Protein, Protein structure, Amino acid, Acid, Secondary structure, Tertiary structure, Smooth muscle, Alpha helix


Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of identifying features that are important for fiber formation. Although spiders and silkworms are very distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms produce large silk proteins that are highly repetitive and extremely soluble at high pH, likely due to the globular terminal domains that flank an intermediate repetitive region. The silk proteins are produced and stored at a very high concentration in glands, and then transported along a narrowing tube in which they change conformation in response primarily to a pH gradient generated by carbonic anhydrase and proton pumps, as well as to ions and shear forces. The silk proteins thereby convert from random coil and alpha helical soluble conformations to beta sheet fibers. We suggest that factors that need to be optimized for successful production of artificial silk proteins capable of forming tough fibers include protein solubility, pH sensitivity, and preservation of natively folded proteins throughout the purification and initial spinning processes.

Concepts: Protein, Acid, Secondary structure, Tertiary structure, Hydrogen bond, Linus Pauling, Silk, Alpha helix