Discover the most talked about and latest scientific content & concepts.

Concept: Alluvium


The current study aimed to test the hypothesis that both land-use change and soil type are responsible for the major changes in the fungal and archaeal community structure and functioning of the soil microbial community in Brazilian Pampa biome. Soil samples were collected at sites with different land-uses (native grassland, native forest, Eucalyptus and Acacia plantation, soybean and watermelon field) and in a typical toposequence in Pampa biome formed by Paleudult, Albaqualf and alluvial soils. The structure of soil microbial community (archaeal and fungal) was evaluated by ribosomal intergenic spacer analysis and soil functional capabilities were measured by microbial biomass carbon and metabolic quotient. We detected different patterns in microbial community driven by land-use change and soil type, showing that both factors are significant drivers of fungal and archaeal community structure and biomass and microbial activity. Fungal community structure was more affected by land-use and archaeal community was more affected by soil type. Irrespective of the land-use or soil type, a large percentage of operational taxonomic unit were shared among the soils. We accepted the hypothesis that both land-use change and soil type are drivers of archaeal and fungal community structure and soil functional capabilities. Moreover, we also suggest the existence of a soil microbial core.

Concepts: Archaea, Bacteria, Eukaryote, Ribosomal RNA, Soil, Steppe, Prairie, Alluvium


The Tiber valley is a prominent feature in the landscape of ancient Rome and an important element for understanding its urban development. However, little is known about the city’s original setting. Our research provides new data on the Holocene sedimentary history and human-environment interactions in the Forum Boarium, the location of the earliest harbor of the city. Since the Last Glacial Maximum, when the fluvial valley was incised to a depth of tens of meters below the present sea level, 14C and ceramic ages coupled with paleomagnetic analysis show the occurrence of three distinct aggradational phases until the establishment of a relatively stable alluvial plain at 6-8 m a.s.l. during the late 3rd century BCE. Moreover, we report evidence of a sudden and anomalous increase in sedimentation rate around 2600 yr BP, leading to the deposition of a 4-6m thick package of alluvial deposits in approximately one century. We discuss this datum in the light of possible tectonic activity along a morpho-structural lineament, revealed by the digital elevation model of this area, crossing the Forum Boarium and aligned with the Tiber Island. We formulate the hypothesis that fault displacement along this structural lineament may be responsible for the sudden collapse of the investigated area, which provided new space for the observed unusually large accumulation of sediments. We also posit that, as a consequence of the diversion of the Tiber course and the loss in capacity of transport by the river, this faulting activity triggered the origin of the Tiber Island.

Concepts: Sedimentary rock, Ice age, Ancient Rome, Alluvium, Rome, Digital elevation model, Alluvial fan, Alluvial plain


The present study reports the potential of newly isolated calcite precipitating bacteria isolated from alluvial soil to improve the strength and durability of concrete. A total of sixteen samples of alluvial soil and sewage were collected from the different locations of province Solan (India). For isolation, enrichment culture technique was used to enrich calcite precipitating strains in Urea broth. After enrichment, fourteen distinct bacterial strains were obtained on Urea agar. Based on qualitative and quantitative screening for urease activity, five isolates were obtained possessing higher calcite formation and urease activities (38-77 μmhos/cm) as compared with standard strain of Bacillus megaterium MTCC 1684 (77 μmhos/cm). An isolate I13 identified as Lysinibacillus sp. was selected for self healing property in the concrete mix of M20. An improved compressive strength of 1.5 fold was observed in concrete samples amended with Lysinibacillus sp. over the concrete amended with B. megaterium MTCC 1684 after 28 days of curing. The higher calcite precipitation activity was indicated in Lysinibacillus sp. by FE-SEM micrographs and EDX analysis.

Concepts: Bacteria, Soil, Qualitative research, Materials science, Bacillus, Compressive strength, Concrete, Alluvium


During COP 21 in Paris 2015, several states and organizations agreed on the “4/1000” initiative for food security and climate. This initiative aims to increase world’s soil organic carbon (SOC) stocks by 4‰ annually. The influence of soil development status on SOC dynamics is very important but usually not considered in studies. We analyse SOC accumulation under forest, grassland and cropping systems along a soil age gradient (10-17,000years) to show the influence of soil development status on SOC increase. SOC stocks (0-40cm) and accumulation rates along a chronosequence in alluvial soils of the Danube River in the Marchfeld (eastern Austria) were analysed. The analysed Fluvisols and Chernozems have been used as forest, grassland and cropland for decades or hundreds of years. The results showed that there is a fast build-up of OC stocks (0-40cm) in young soils with accumulation of ~1.3tha-1a-1OC in the first 100years and ~0.5tha-1a-1OC between 100 and 350years almost independent of land use. Chernozems with a sediment deposition age older than 5.000years have an accumulation rate<0.01tOCha-1a-1(0-40cm). Radiocarbon dating showed that the topsoil (0-10cm) consists mainly of ">modern" and “modern” carbon indicating a fast carbon cycling. Carbon in subsoil is less exposed to decomposition and OC can be stored at long-time scales in the subsoil (14C age of 3670±35 BP). In view of the ‘4/1000’ initiative, soils with constant carbon input (forest & grassland) fulfil the intended 4‰ growth rate of SOC stocks only in the first 60years of soil development. We proclaim that under the present climate in Central Europe, the increase of SOC stocks in soil is strongly affected by the state of soil development.

Concepts: Soil, Carbon, Germany, Alluvium, Radiocarbon dating, Carbon-14, Subsoil, Danube


Abundant bog oak trunks occur in alluvial deposits of the Raba River in the village of Targowisko (southern Poland). Several of them contain galleries of the great capricorn beetle (Cerambyx cerdo L.). A well-preserved subfossil larva and pupa, as well as adults of this species, are concealed in some of the galleries. These galleries co-occur with boring galleries of other insects such as ship-timber beetles (Lymexylidae) and metallic wood borers (Buprestidae). A dry larva of a stag beetle (Lucanidae) and a mite (Acari) have been found in the C. cerdo galleries. Selected samples of the trunks and a sample of the C. cerdo larva were dated, using radiocarbon and dendrochronological methods, to the period from 45 BC to AD 554; one sample was dated to the period from 799 to 700 BC. Accumulation of the channel alluvia containing the bog oak trunks is synchronous with the Roman Warm Period (late antiquity/Early Mediaeval times). The most recent part of this period correlates with massive accumulations of fallen oak trunks noted from various river valleys in the Carpathian region and dated to AD 450-570. The results indicate that C. cerdo was more abundant within the study area during the Roman Warm Period than it is today.

Concepts: Insect, Beetle, Holocene, Alluvium, Cerambycidae, Stag beetle, Cerambyx cerdo, Cerambyx


Soil surveys were performed in Medolla (Italy), a peculiar area characterized by spotty high soil temperature, gas vent, and lack of vegetation, to determine the migration mechanisms and spatial behavior of gas species. Hereby we present soil gas measurements and their isotopic ratios measured between 2008 and 2015, including the 2012 Emilia-Romagna seismic sequence. We found that soil gas concentrations markedly changed during the main shocks of May 20 and 29, 2012 (Mw 6.1 and 6.0, respectively), highlighting the presence of a buried fault intersecting the gas vents. We suggest that crustal dilation associated with seismic activity favored the uprising of geogas towards the surface. Changes in the isotopic signature highlight the contribution of two distinct sources, one deeper, thermogenic and another superficial related to organic-rich layer, whose relative contribution varied before, during and after the earthquake. We suppose an increase of microbial component likely due to the ground shaking of shallower layers linked to seismic sequence, which masks the thermogenic contribution. Although the changes we detect are specific for an alluvial plain, we deduce that analogous processes may be active elsewhere, and that soil gas geochemistry represents an useful tool to discriminate the gas migration related to seismic activity.

Concepts: Geology, Change, Unified Modeling Language, Earthquake, Earthquake engineering, Seismology, Alluvium, Alluvial plain


Cadmium (Cd) is a trace metal without essential biological functions that is toxic to plants, animals and humans at low concentrations. It occurs naturally in soils, but inputs from anthropogenic sources have increased soil Cd contents worldwide. Cadmium uptake by cocoa (Theobroma cacao L.) has recently attracted attention, after the European Union (EU) decided to bring into force values for maximum Cd concentrations in cocoa products that would be exceeded by current products of various provenances from Latin America. In order to identify factors governing Cd uptake by cocoa, we carried out a survey on 55 cocoa farms in Honduras in which we determined Cd concentrations in cocoa leaves, pod husks and beans and analysed their relationships to a variety of surrounding soil and site factors. Averaging 2.6±0.4mgkg(-1), the concentrations of Cd were higher in the leaves than in the beans. With an average of 1.1±0.2mgkg(-1), the bean Cd concentrations still exceeded the proposed EU limit, however. The bean Cd showed large differences between geological substrates, even though regional variations in ‘total’ soil Cd were comparably small and the average concentration was in the range of uncontaminated soils (0.25±0.02mgkg(-1)). As we found no influence of fertilizer application or vicinity to industrial sites, we conclude that the differences in soil Cd between sites were due to natural variation. Of all factors included here, DGT-available soil Cd was the best predictor of bean Cd (R(2)=0.5). When DGT was not considered, bean Cd was best predicted by ‘total’ soil Cd, pH and geology. The highest bean Cd concentrations were found on alluvial substrates.

Concepts: European Union, United States, Soil, Zinc, Geology, Bean, Alluvium, Theobroma cacao


Soils account for the largest terrestrial pool of carbon and have the potential for even greater quantities of carbon sequestration. Typical soil carbon © stocks used in global carbon models only account for the upper 1 meter of soil. Previously unaccounted for deep carbon pools (>1 m) were generally considered to provide a negligible input to total C contents and represent less dynamic C pools. Here we assess deep soil C pools associated with an alluvial floodplain ecosystem transitioning from agricultural production to restoration of native vegetation. We analyzed the soil organic carbon (SOC) concentrations of 87 surface soil samples (0-15 cm) and 23 subsurface boreholes (0-3 m). We evaluated the quantitative importance of the burial process in the sequestration of subsurface C and found our subsurface soils (0-3 m) contained considerably more C than typical C stocks of 0-1 m. This deep unaccounted soil C could have considerable implications for global C accounting. We compared differences in surface soil C related to vegetation and land use history and determined that flooding restoration could promote greater C accumulation in surface soils. We conclude deep floodplain soils may store substantial quantities of C and floodplain restoration should promote active C sequestration.

Concepts: Soil, Charcoal, Humus, Carbon capture and storage, Burial, Alluvium, Terra preta, Alluvial plain


Adsorption and desorption are important processes that affect atrazine transport, transformation, and bioavailability in soils. In this study, the adsorption-desorption characteristics of atrazine in three soils (laterite, paddy soil and alluvial soil) were evaluated using the batch equilibrium method. The results showed that the kinetics of atrazine in soils was completed in two steps: a “fast” adsorption and a “slow” adsorption and could be well described by pseudo-second-order model. In addition, the adsorption equilibrium isotherms were nonlinear and were well fitted by Freundlich and Langmuir models. It was found that the adsorption data on laterite, and paddy soil were better fitted by the Freundlich model; as for alluvial soil, the Langmuir model described it better. The maximum atrazine sorption capacities ranked as follows: paddy soil>alluvial soil>laterite. Results of thermodynamic calculations indicated that atrazine adsorption on three tested soils was spontaneous and endothermic. The desorption data showed that negative hysteresis occurred. Furthermore, lower solution pH value was conducive to the adsorption of atrazine in soils. The atrazine adsorption in these three tested soils was controlled by physical adsorption, including partition and surface adsorption. At lower equilibrium concentration, the atrazine adsorption process in soils was dominated by surface adsorption; while with the increase of equilibrium concentration, partition was predominant.

Concepts: Soil, Thermodynamics, Adsorption, PH, Sorption, Surface chemistry, Equilibrium constant, Alluvium


The dynamic behavior and inherent spatial heterogeneity, at different hierarchic levels, of the soil system often make the spatial distribution of potentially toxic metals (PTMs) quite complex and difficult to assess correctly. This work demonstrates that the application of laser ablation spectrometry (LA-ICP-MS) to soil thin sections constitutes an ancillary powerful tool to well-established analytical methods for tracing the behavior and fate of potential soil contaminants at the microsite level. It allowed to discriminate the contribution of PTMs in distinct soil sub-components, such as parent rock fragments, neoformed, clay-enriched or humified matrix, and specific pedogenetic features of illuvial origin (unstained or iron-stained clay coatings) even at very low contents. PTMs were analyzed in three soil profiles located in the Muravera area (Sardinia, Italy), where several, now abandoned mines were exploited. Recurrent trends of increase of many PTMs from rock to pedogenic matrix and to illuvial clay coatings, traced by LA-ICP-MS compositional data, revealed a pedogenetic control on metal fractionation and distribution, based on adsorption properties of clay minerals, iron oxyhydroxides or organic matter, and downprofile illuviation processes. The main PTMs patterns coupled with SEM-EDS analyses suggest that heavy metal-bearing mineral grains were sourced from the mine plants, in addition to the natural sedimentary input. The interplay between soil-forming processes and geomorphic dynamics significantly contributed to the PTMs spatial distribution detected in the different pedogenetic horizons and soil features.

Concepts: Spectroscopy, Soil, Sedimentary rock, Mineral, Rock, Heavy metal music, Organic matter, Alluvium