Discover the most talked about and latest scientific content & concepts.

Concept: Allium


Onion and garlic are renowned for their roles as functional foods. The health benefits of garlic are attributed to di-2-propenyl thiosulfinate (allicin), a sulfur compound found in disrupted garlic but not found in disrupted onion. Recently, onions have been grown with repressed lachrymatory factor synthase (LFS) activity, which causes these onions to produce increased amounts of di-1-propenyl thiosulfinate, an isomer of allicin. This investigation into the key health attributes of LFS-silenced (tearless) onions demonstrates that they have some attributes more similar to garlic and that this is likely due to the production of novel thiosulfinate or metabolites. The key finding was that collagen-induced in vitro platelet aggregation was significantly reduced by tearless onion extract over normal onion extract. Thiosulfinate or derived compounds were shown not to be responsible for the observed changes in the inflammatory response of AGS (stomach adenocarcinoma) cells to tumor necrosis factor alpha (TNFα) when pretreated with model onion juices. A preliminary rat feeding trial indicated that the tearless onions may also play a key role in reducing weight gain.

Concepts: Inflammation, Platelet, Garlic, Allium, Tumor necrosis factor-alpha, Onion, Allicin, Tree onion


The phenolic compounds were extracted from green and yellow leaves, stalks, and seeds of garlic ( Allium ursinum L.). The extracts were analyzed by liquid chromatography-photodiode array detector-electrospray ionization-tandem mass spectrometry (LC-PDA-ESI-MS/MS). In total, 21 compounds were detected. The flavonol derivatives were identified on the basis of their ultraviolet (UV) spectra and fragmentation patterns in collision-induced dissociation experiments. On the basis of accurate MS and MS/MS data, six compounds were newly identified in bear’s garlic, mainly the kaempferol derivatives. As far as the investigated parts of garlic are concerned, the kaempferol derivatives were found to be predominant in yellow leaves [2362.96 mg/100 g of dry matter (dm)], followed by green leaves (1856.31 mg/100 g of dm). Seeds contained the minimal phenolic compounds, less than stalks. The yellow leaves of A. ursinum possessed a much larger content of compounds acylated with p-coumaric acid than green leaves (1299.97 versus 855.67 mg/100 g of dm, respectively). The stalks and seeds contained much more non-acetylated than acetylated flavonoid glycosides with p-coumaric acid compounds (162.4 versus 62.82 mg/100 g of dm and 105.49 versus 24.18 mg/100 g of dm, respectively).

Concepts: Mass spectrometry, Garlic, Allium, Quercetin, Flavonoid, Phenols, Tandem mass spectrometry, Myricetin


Onions (Allium cepa L.) are plagued by a number of bacterial pathogens including Pantoea ananatis, P. agglomerans, Burkholderia cepacia, Enterobacter cloacae, Pectobacterium carotovorum subsp. carotovorum, Xanthomonas axonopodis pv. axonopodis and several Pseudomonas spp. We developed a semi-selective medium, termed onion extract medium (OEM), to selectively and rapidly isolate bacteria pathogenic to and associated with onions and onion-related samples including bulbs, seeds, sets, transplant seedlings, soil and water. Most strains of interest grow sufficiently on OEM in 24h at 28°C for tentative identification based on colony morphology, facilitating further characterization by microbiological and/or molecular means.

Concepts: Bacteria, Microbiology, Pathogen, Garlic, Allium, Onion, Bulb, Shallot


Five plant leaf extracts (Malva parviflora, Beta vulgaris subsp. Vulgaris, Anethum graveolens, Allium kurrat and Capsicum frutescens) were screened for their bioreduction behavior for synthesis of silver nanoparticles. M. parviflora (Malvaceae) was found to exhibit the best reducing and protecting action in terms of synthesis rate and monodispersity of the prepared silver nanoparticles. Our measurements indicate that biosynthesis of Ag nanoparticles by M. parviflora produces Ag nanoparticles with the diameters in the range of 19-25nm. XRD studies reveal a high degree of crystallinity and monophasic Ag nanoparticles of face-centered cubic structure. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process is an excellent candidate for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.

Concepts: Photosynthesis, Allium, Cubic crystal system, Leaf vegetables, Diamond cubic, Allium ampeloprasum, Kurrat, Capsicum frutescens


Abstract Advanced glycation endproducts and oxidative stress contribute to the pathogenesis of diabetic complications. The total phenolic content (TPC), antioxidant, and antiglycation properties of crude ethanolic extracts of 10 common culinary herbs and spices from Mauritius were investigated in vitro. Fluorescence at 370 nm/440 nm was used as an index of albumin glycation. Allium sativum had the highest TPC (3.1 mg GAE/mL), whereas Allium cepa L. showed the highest radical scavenging capacity (72%) and Zingiber officinale had the most potent ferric-reducing antioxidant power (FRAP) (2.99 mg AAE/mL). In contrast, Thymus vulgaris and Petroselinum crispum had the most potent antiglycation activity with IC(50) values of 21.8 and 200 mg/mL, respectively. There was no significant correlation between TPC (r=0.001), FRAP (r=0.161), and the antiglycation activity (r=0.034) for the extracts studied. Therefore, the results showed that antiglycation properties of plant-derived extracts cannot always be attributed to their phenolic content or antioxidant potential.

Concepts: Oxidative stress, Oxidative phosphorylation, Garlic, Allium, Ginger, Onion, Spice, Alliaceae


The disposal of municipal waste in landfills may pose an environmental problem because the product of the decomposition of these residues generates large volumes of leachate, which may present high toxicity. The aim of this study was to assess the toxic and genotoxic effects of a sample of untreated leachate in fish (Leporinus obtusidens) and onions (Allium cepa). The leachate was collected in a landfill located in the region of Vale do Rio dos Sinos, southern Brazil. The fish were exposed to raw leachate, at concentrations of 0.5%, 1.0%, 5%, 10% and 20% for 6 days, while the bulbs of A. cepa were exposed to concentrations of 5%, 10%, 25%, 50% and 100% for 48 h. For fish, the concentrations of 5%, 10% and 20% were lethal, thus indicating high toxicity; however, sublethal concentrations (0.5% and 1.0%) showed no genotoxicity by micronucleus test when compared with the control group. In the bioassays involving onions, high toxicity was observed, with significant reduction of root growth and mitotic index in bulbs exposed to the 100% concentration of the leachate. An increase in the frequency of chromosome abnormalities in the A. cepa root cells in anaphase-telophase was observed in accordance with the increase in the concentration of leachate (5%, 10%, 25% and 50%), with values significantly greater than the control, at the highest concentration. The results showed that the leachate contains toxic and genotoxic substances, thus representing a major source of environmental pollution if not handled properly.

Concepts: Toxicology, Pollution, Garlic, Allium, Root, Leachate, Landfill, Onion


Intercropping and rotating banana (Musa spp.) with Chinese chive (Allium tuberosum Rottler) has been used as an effective method to control Panama disease (Fusarium wilt) of banana in South China. However, the underlying mechanism is unknown. In this study, we used aqueous leachates and volatiles from Chinese chive to evaluate their antimicrobial activity on Fusarium oxysporum f. sp. cubense race 4 (FOC), the causal agent of Panama disease in banana, and identified the antifungal compounds. Both leaf and root leachates of Chinese chive displayed strong inhibition against FOC, but the concentrated leachates showed lower inhibition than the original leachates. In a sealed system volatiles emitted from the leaves and roots of Chinese chive inhibited mycelial growth of FOC. Volatile compounds emitted from the intact growing roots mimicking natural environment inhibited spore germination of FOC. We identified five volatiles including 2-methyl-2-pentenal and four organosulfur compounds (dimethyl trisulfide, dimethyl disulfide, dipropyl disulfide, and dipropyl trisulfide) from the leaves and roots of Chinese chive. All these compounds exhibited inhibitory effects on FOC, but 2-methyl-2-pentenal and dimethyl trisulfide showed stronger inhibition than the other three compounds. 2-Methyl-2-pentenal at 50-100 μl/l completely inhibited the mycelial growth of FOC. Our results demonstrate that antifungal volatiles released from Chinese chive help control Panama disease in banana. We conclude that intercropping and rotating banana with Chinese chive can control Panama disease and increase cropland biodiversity.

Concepts: Fusarium, Garlic, Allium, Fusarium oxysporum, Plant pathogens and diseases, Volatile, Banana, Dimethyl sulfide


We describe the synthesis, reactivity, and antithrombotic and anti-angiogenesis activity of difluoroallicin (S-(2-fluoroallyl) 2-fluoroprop-2-ene-1-sulfinothioate) and S-2-fluoro-2-propenyl-l-cysteine, both easily prepared from commercially available 3-chloro-2-fluoroprop-1-ene, as well as the synthesis of 1,2-bis(2-fluoroallyl)disulfane, 5-fluoro-3-(1-fluorovinyl)-3,4-dihydro-1,2-dithiin, trifluoroajoene ((E,Z)-1-(2-fluoro-3-((2-fluoroallyl)sulfinyl)prop-1-en-1-yl)-2-(2-fluoroallyl)disulfane), and a bis(2-fluoroallyl)polysulfane mixture. All tested organosulfur compounds demonstrated effective inhibition of either FGF or VEG-mediated angiogenesis (anti-angiogenesis activity) in the chick chorioallantoic membrane (CAM) or the mouse Matrigel® models. No embryo mortality was observed. Difluoroallicin demonstrated greater inhibition (p < 0.01) versus organosulfur compounds tested. Difluoroallicin demonstrated dose-dependent inhibition of angiogenesis in the mouse Matrigel® model, with maximal inhibition at 0.01 mg/implant. Allicin and difluoroallicin showed an effective antiplatelet effect in suppressing platelet aggregation compared to other organosulfur compounds tested. In platelet/fibrin clotting (anti-coagulant activity), difluoroallicin showed concentration-dependent inhibition of clot strength compared to allicin and the other organosulfur compounds tested.

Concepts: Platelet, Warfarin, Garlic, Allium, Organosulfur compounds, Onion, Alliaceae, Allicin


The onion lachrymatory factor (LF) is produced from trans-S-1-propenyl-L-cysteine sulfoxide (PRENCSO) through successive reactions catalyzed by alliinase (EC and lachrymatory factor synthase (LFS), and is responsible for the tear inducing-property and the pungency of fresh onions. We developed tearless, non-pungent onions non-transgenically by irradiating seeds with neon-ion at 20 Gy. The bulbs obtained from the irradiated seeds and their offspring bulbs produced by selfing were screened by organoleptic assessment of tear-inducing property or HPLC analysis of LF production. After repeated screening and seed production by selfing, two tearless, non-pungent bulbs were identified in the third generation (M3) bulbs. Twenty M4 bulbs obtained from each of them showed no tear-inducing property or pungency when evaluated by 20 sensory panelists. The LF production levels in these bulbs were approximately 7.5-fold lower than those of the normal onion. The low LF production levels were due to reduction in alliinase activity, which was a result of low alliinase mRNA expression (less than 1% of that in the normal onion) and consequent low amounts of the alliinase protein. These tearless, non-pungent onions should be welcomed by all who tear while chopping onions and those who work in facilities where fresh onions are processed.

Concepts: Messenger RNA, Garlic, Allium, Tears, Onion, Bulb, Allicin, Tree onion


The Allium genus includes garlic, onions, shallots, leeks, and chives. These vegetables are popular in cuisines worldwide and are valued for their potential medicinal properties. Epidemiological studies, while limited in their abilities to assess Allium consumption, indicate some associations of Allium vegetable consumption with decreased risk of cancer, particularly cancers of the gastrointestinal tract. Limited intervention studies have been conducted to support these associations. The majority of supportive evidence on Allium vegetables cancer preventive effects comes from mechanistic studies. These studies highlight potential mechanisms of individual sulfur-containing compounds and of various preparations and extracts of these vegetables, including decreased bioactivation of carcinogens, antimicrobial activities, and redox modification. Allium vegetables and their components have effects at each stage of carcinogenesis and affect many biological processes that modify cancer risk. This review discusses the cancer preventive effects of Allium vegetables, particularly garlic and onions, and their bioactive sulfur compounds and highlights research gaps.

Concepts: Epidemiology, Cancer, Garlic, Allium, Vegetable, Onion, Shallot, Leek