Discover the most talked about and latest scientific content & concepts.

Concept: Alkane


Selective catalytic synthesis of Z-olefins has been challenging. Here we describe a method to produce 1,2-disubstituted olefins in high Z selectivity via reductive cross-coupling of alkyl halides with terminal arylalkynes . The method employs inexpensive and non-toxic catalyst (iron(II) bromide) and reductant (zinc). The substrate scope encompasses primary, secondary, and tertiary alkyl halides, and the reaction tolerates a large number of functional groups. The utility of the method is demonstrated in the synthesis of several pharmaceutically relevant molecules. Mechanistic study suggests that the reaction proceeds through an iron-catalyzed anti-selective carbozincation pathway.

Concepts: Chemical reaction, Functional group, Alkene, Functional groups, Alkane, Hydrohalogenation


Biofuels are the most immediate, practical solution for mitigating dependence on fossil hydrocarbons, but current biofuels (alcohols and biodiesels) require significant downstream processing and are not fully compatible with modern, mass-market internal combustion engines. Rather, the ideal biofuels are structurally and chemically identical to the fossil fuels they seek to replace (i.e., aliphatic n- and iso-alkanes and -alkenes of various chain lengths). Here we report on production of such petroleum-replica hydrocarbons in Escherichia coli. The activity of the fatty acid (FA) reductase complex from Photorhabdus luminescens was coupled with aldehyde decarbonylase from Nostoc punctiforme to use free FAs as substrates for alkane biosynthesis. This combination of genes enabled rational alterations to hydrocarbon chain length (Cn) and the production of branched alkanes through upstream genetic and exogenous manipulations of the FA pool. Genetic components for targeted manipulation of the FA pool included expression of a thioesterase from Cinnamomum camphora (camphor) to alter alkane Cn and expression of the branched-chain α-keto acid dehydrogenase complex and β-keto acyl-acyl carrier protein synthase III from Bacillus subtilis to synthesize branched (iso-) alkanes. Rather than simply reconstituting existing metabolic routes to alkane production found in nature, these results demonstrate the ability to design and implement artificial molecular pathways for the production of renewable, industrially relevant fuel molecules.

Concepts: Fatty acid, Ethanol, Petroleum, Hydrocarbon, Alkane, Biofuel, Methane, Internal combustion engine


Recent measurements of methane emissions from abandoned oil/gas wells show that these wells can be a substantial source of methane to the atmosphere, particularly from a small proportion of high-emitting wells. However, identifying high emitters remains a challenge. We couple 163 well measurements of methane flow rates; ethane, propane, and n-butane concentrations; isotopes of methane; and noble gas concentrations from 88 wells in Pennsylvania with synthesized data from historical documents, field investigations, and state databases. Using our databases, we (i) improve estimates of the number of abandoned wells in Pennsylvania; (ii) characterize key attributes that accompany high emitters, including depth, type, plugging status, and coal area designation; and (iii) estimate attribute-specific and overall methane emissions from abandoned wells. High emitters are best predicted as unplugged gas wells and plugged/vented gas wells in coal areas and appear to be unrelated to the presence of underground natural gas storage areas or unconventional oil/gas production. Repeat measurements over 2 years show that flow rates of high emitters are sustained through time. Our attribute-based methane emission data and our comprehensive estimate of 470,000-750,000 abandoned wells in Pennsylvania result in estimated state-wide emissions of 0.04-0.07 Mt (10(12) g) CH4 per year. This estimate represents 5-8% of annual anthropogenic methane emissions in Pennsylvania. Our methodology combining new field measurements with data mining of previously unavailable well attributes and numbers of wells can be used to improve methane emission estimates and prioritize cost-effective mitigation strategies for Pennsylvania and beyond.

Concepts: Petroleum, Hydrocarbon, Alkane, Natural gas, Methane, Greenhouse gas, Ethane, Propane


Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a method for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We also demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.

Concepts: Petroleum, Climate change, Hydrocarbon, Alkane, Coal, Lubricant, Internal combustion engine, Fuel


This article is an introduction and general discussion regarding the use of Fisher-Tropsch wax in petroleum jelly applications. Traditionally, petroleum jelly is prepared from a blend of microwax, paraffin wax and mineral oil that are all derived from crude oil. Sasol Wax has successfully prepared a petroleum jelly based on predominantly to fully synthetic Fisher-Tropsch wax. Sasol Wax was awarded a patent P53898ZP00-29 November 11 for a predominantly to fully synthetic petroleum jelly based on Fisher-Tropsch wax blends. The benefits of Fisher-Tropsch wax discussed in this article include the absence of aromatic compounds and polycyclic aromatic compounds in Fisher-Tropsch wax as well as the sustainable production that is possible with Fisher-Tropsch wax, as opposed to paraffin wax that may be affected by the closure of group I Base Oil plants. This article will be the first in a series of articles from the same authors, and follow-up articles will include solid-state nuclear magnetic resonance and crystallization studies to determine the influence of predominantly synthetic waxes on petroleum jelly network structures compared with more traditional mineral oil-derived petroleum jellies, final product performance and stability of synthetic petroleum jelly used in, for example, personal care lotions or creams. The influence of oxygenated compounds and product safety and rheological properties (including primary skin feel upon application and secondary skin feel after application) of synthetic petroleum jellies compared with traditional mineral oil-derived petroleum jellies are discussed.

Concepts: Petroleum, Polycyclic aromatic hydrocarbon, Hydrocarbon, Paraffin, Wax, Alkane, Beeswax, Mineral oil


Reactions between dilute methane and non-energetic hydroxyl radicals were carried out at 3.5 K. The temperature was kept low in order to characterize the step-wise reaction and prevent parasitic side reactions. The hydroxyl radicals originate from discharged H2O/He mixtures. The reactions were monitored in-situ using a Fourier transform infrared spectrometer. The formation of CH3 radicals was confirmed simultaneously with the formation of water ice. Subsequent recombination reactions lead to the formation of ethane (C2H6). Production of ethane and water ice occur preferentially to the formation of methanol.

Concepts: Spectroscopy, Alkane, Fourier transform, Infrared spectroscopy, Fourier transform spectroscopy, Methane, Fourier analysis, Ethane


The goal of this study is the selective oxyfunctionalization of aliphatic compounds under mild and environmentally-friendly conditions using a low-cost enzymatic biocatalyst. This could be possible taking advantage from a new peroxidase type that catalyzes monooxygenase reactions with H2 O2 as the only cosubstrate (peroxygenase). With this purpose, recombinant peroxygenase, from gene mining in the sequenced genome of Coprinopsis cinerea and heterologous expression using an industrial fungal host, is tested for the first time on aliphatic substrates. The reaction on free and esterified fatty acids and alcohols, and long-chain alkanes was followed by gas chromatography, and the different reaction products were identified by mass spectrometry. Regioselective hydroxylation of saturated/unsaturated fatty acids was observed at the ω-1 and ω-2 positions (only at the ω-2 position in myristoleic acid). Alkyl esters of fatty acids and monoglycerides were also ω-1 or ω-2 hydroxylated, but di- and triglycerides were not modified. Fatty alcohols yielded hydroxy derivatives at the ω-1 or ω-2 positions (diols) but also fatty acids and their hydroxy derivatives. Interestingly, the peroxygenase was able to oxyfunctionalize alkanes giving, in addition to alcohols at positions 2 or 3, dihydroxylated derivatives at both sides of the molecule. The predominance of mono- or dihydroxylated derivatives seems related to the higher or lower proportion of acetone, respectively, in the reaction medium. The recombinant C. cinerea peroxygenase appears as a promising biocatalyst for alkane activation and production of aliphatic oxygenated derivatives, with better properties than the previously reported peroxygenase from Agrocybe aegerita, and advantages related to its recombinant nature for enzyme engineering and industrial production. Biotechnol. Bioeng. © 2013 Wiley Periodicals, Inc.

Concepts: Alcohol, Metabolism, Fatty acid, Enzyme, Fatty acid metabolism, Ester, Alkane, Fatty alcohol


Rapid advancements in carbon-based fillers have enabled a new and more promising platform in the development of electromagnetic attenuation composites. Alignment of fillers in composites with specific structures and morphologies has been widely pursued to achieve high performance based on taking advantage of unique filler characteristics. In this work, few-layer graphene (FLG), obtained from direct exfoliation of graphite, was fabricated into paraffin wax to prepare FLG/wax composites and investigate their electromagnetic interference (EMI) shielding performance. The as-exfoliated FLG/wax samples have shown much improved EMI performance compared to the commercial graphite/wax ones. For further improvement of EMI shielding performance, split-press-merge approaches were applied to align the FLG fillers to achieve anisotropic characteristics in the plane perpendicular to the pressing direction. Much enhanced EMI shielding performance coupled with an improvement in absorption and reflection was observed in the post-alignment FLG/wax composites. An average interparticle distance model associated with improved electrically conducting interconnection and enlarged effective reflection regions with respect to enhanced reflection efficiency were discussed. The results suggest a platform and promising opportunities for preparing high-performance EMI shielding composites.

Concepts: Paraffin, Wax, Alkane, Graphene, Plane, Electromagnetic interference, Beeswax, Candle


4,4'-Bis-(4-pentenyl)-dithieno[3,2-b:2',3'-d]germole was synthesized as a functional building block for the efficient preparation of dithienogermole (DTG) derivatives with varying alkyl chain lengths and pendant functionalities in excellent yields. These derivatives were efficiently isolated via olefin cross-metathesis followed by hydrogenation.

Concepts: Alkyne, Chemical synthesis, Alkene, Functional groups, Alkane, Synthesis, Aldehyde, Alkyl


The stereoselective total synthesis of garsubellin A is described. The total synthesis was achieved through the stereoselective construction of a bicyclo[3.3.1]nonane derivative via a three-step sequence: intramolecular cyclopropanation, formation of a germinal dimethyl group, and regioselective ring opening of cyclopropane. To complete the total synthesis of garsubellin A, chemo- and stereoselective hydrogenation to generate the C8 stereogenic center is followed by the formation of the fused tetrahydrofuran ring by a regioselective epoxide-opening reaction with C3 ketone, and finally cross metathesis to construct two prenyl groups.The Journal of Antibiotics advance online publication, 6 February 2013; doi:10.1038/ja.2012.125.

Concepts: Stereochemistry, Total synthesis, Mathematical analysis, Vector space, Alkane, Stereocenter, Construction, Cyclopropane