SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Alkalinity

177

Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity.

Concepts: Acid, Water, United States, Chemistry, Potassium, Base, Ocean acidification, Alkalinity

19

Concern on the impacts of ocean acidification on calcifiers, such as bivalves, sea urchins, and foraminifers, has led to efforts to understand the controls on pH in their habitats, which include kelp forests and seagrass meadows. The metabolism of these habitats can lead to diel fluctuation in pH with increases during the day and declines at night, suggesting no net effect on pH at time scales longer than daily. We examined the capacity of subarctic and Arctic kelps to up-regulate pH in situ and experimentally tested the role of photoperiod in determining the capacity of Arctic macrophytes to up-regulate pH. Field observations at photoperiods of 15 and 24 hours in Greenland combined with experimental manipulations of photoperiod show that photoperiods longer than 21 hours, characteristic of Arctic summers, are conducive to sustained up-regulation of pH by kelp photosynthesis. We report a gradual increase in pH of 0.15 units and a parallel decline in pCO2 of 100 parts per million over a 10-day period in an Arctic kelp forest over midsummer, with ample scope for continued pH increase during the months of continuous daylight. Experimental increase in CO2 concentration further stimulated the capacity of macrophytes to deplete CO2 and increase pH. We conclude that long photoperiods in Arctic summers support sustained up-regulation of pH in kelp forests, with potential benefits for calcifiers, and propose that this mechanism may increase with the projected expansion of Arctic vegetation in response to warming and loss of sea ice.

Concepts: Carbon dioxide, PH, Ocean, Carbonic acid, Aquatic ecology, Kelp, Kelp forest, Alkalinity

6

Ocean acidification (OA) is predicted to have widespread implications for marine organisms, yet the capacity for species to acclimate or adapt over this century remains unknown. Recent transgenerational studies have shown that for some marine species, exposure of adults to OA can facilitate positive carryover effects to their larval and juvenile offspring that help them to survive in acidifying oceanic conditions. But whether these positive carryover effects can persist into adulthood or the next generation is unknown. Here we tested whether positive carryover effects found in larvae of the oyster, Saccostrea glomerata following transgenerational exposure to elevated CO2, could persist into adulthood and whether subsequent transgenerational exposure of adults to elevated CO2 would facilitate similar adaptive responses in the next generation of larvae and juveniles. Following our previous transgenerational exposure of parental adults and first generation (F1) larvae to ambient (385 μatm) and elevated (856 μatm) CO2, newly settled F1 juveniles were transferred to the field at ambient CO2 for 14 months, until they reached reproductive maturity. At this time, the F1 adults were returned to the laboratory and the previous transgenerational CO2 exposure was repeated to produce F2 offspring. We found that the capacity of adults to regulate extracellular pH at elevated CO2 was improved if they had a prior history of transgenerational exposure to elevated CO2. In addition, subsequent transgenerational exposure of these adults led to an increase in the resilience of their larval and juvenile offspring. Offspring with a history of transgenerational exposure to elevated CO2 had a lower percentage abnormality, faster development rate, faster shell growth and increased heart rate at elevated CO2 compared with F2 offspring with no prior history of exposure to elevated CO2. Our results suggest that positive carryover effects originating during parental and larval exposure will be important in mediating some of the impacts of OA for later life-history stages and generations.

Concepts: Carbon dioxide, Oceanography, PH, Star Trek: The Next Generation, Ocean, Carbonic acid, Ocean acidification, Alkalinity

4

The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km2. We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These 3 variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

Concepts: Carbon dioxide, Water, Carbon, Bicarbonate, Carbon cycle, Ocean acidification, Chemical oceanography, Alkalinity

3

Quantifying the amount of carbon dioxide (CO2) in seawater is an essential component of ocean acidification research; however, equipment for measuring CO2 directly can be costly and involve complex, bulky apparatus. Consequently, other parameters of the carbonate system, such as pH and total alkalinity (AT), are often measured and used to calculate the partial pressure of CO2 (pCO2) in seawater, especially in biological CO2-manipulation studies, including large ecological experiments and those conducted at field sites. Here we compare four methods of pCO2 determination that have been used in biological ocean acidification experiments: 1) Versatile INstrument for the Determination of Total inorganic carbon and titration Alkalinity (VINDTA) measurement of dissolved inorganic carbon (CT) and AT, 2) spectrophotometric measurement of pHT and AT, 3) electrode measurement of pHNBS and AT, and 4) the direct measurement of CO2 using a portable CO2 equilibrator with a non-dispersive infrared (NDIR) gas analyser. In this study, we found these four methods can produce very similar pCO2 estimates, and the three methods often suited to field-based application (spectrophotometric pHT, electrode pHNBS and CO2 equilibrator) produced estimated measurement uncertainties of 3.5-4.6% for pCO2. Importantly, we are not advocating the replacement of established methods to measure seawater carbonate chemistry, particularly for high-accuracy quantification of carbonate parameters in seawater such as open ocean chemistry, for real-time measures of ocean change, nor for the measurement of small changes in seawater pCO2. However, for biological CO2-manipulation experiments measuring differences of over 100 μatm pCO2 among treatments, we find the four methods described here can produce similar results with careful use.

Concepts: Oxygen, Carbon dioxide, Carbon, PH, Carbonate, Carbonic acid, Chemical oceanography, Alkalinity

3

As the oceans become less alkaline due to rising CO2 levels, deleterious consequences are expected for calcifying corals. Predicting how coral calcification will be affected by on-going ocean acidification (OA) requires an accurate assessment of CaCO3 deposition and an understanding of the relative importance that decreasing calcification and/or increasing dissolution play for the overall calcification budget of individual corals. Here, we assessed the compatibility of the (45)Ca-uptake and total alkalinity (TA) anomaly techniques as measures of gross and net calcification (GC, NC), respectively, to determine coral calcification at pHT 8.1 and 7.5. Considering the differing buffering capacity of seawater at both pH values, we were also interested in how strongly coral calcification alters the seawater carbonate chemistry under prolonged incubation in sealed chambers, potentially interfering with physiological functioning. Our data indicate that NC estimates by TA are erroneously ∼5% and ∼21% higher than GC estimates from (45)Ca for ambient and reduced pH, respectively. Considering also previous data, we show that the consistent discrepancy between both techniques across studies is not constant, but largely depends on the absolute value of CaCO3 deposition. Deriving rates of coral dissolution from the difference between NC and GC was not possible and we advocate a more direct approach for the future by simultaneously measuring skeletal calcium influx and efflux. Substantial changes in carbonate system parameters for incubation times beyond two hours in our experiment demonstrate the necessity to test and optimize experimental incubation setups when measuring coral calcification in closed systems, especially under OA conditions.

Concepts: Carbon dioxide, Coral, PH, Ocean, Aragonite, Ocean acidification, Chemical oceanography, Alkalinity

3

In regions with intensive agriculture, water level fluctuation in wetlands has generally become constricted within narrow limits. Water authorities are, however, considering the re-establishment of fluctuating water levels as a management tool in biodiverse, base-rich fens (‘rich fens’). This includes temporary inundation with surface water from ditches, which may play an important role in counteracting acidification in order to conserve and restore biodiversity. Inundation may result in an increased acid neutralizing capacity (ANC) for two reasons: infiltration of base-rich inundation water into peat soils, and microbial alkalinity generation under anaerobic conditions. The main objectives of this study were to test whether short-term (2 weeks) summer inundation is more effective than short-term winter inundation to restore the ANC in the upper 10 cm of non-floating peat soils, and to explain potential differences. Large-scale field experiments were conducted for five years in base-rich fens and Sphagnum-dominated poor fens. Winter inundation did not result in increased porewater ANC, because infiltration was inhibited in the waterlogged peat and evapotranspiration rates were relatively low. Also, low temperatures limit microbial alkalinity generation. In summer, however, when temperature and evapotranspiration rates are higher, inundation resulted in increased porewater Ca and HCO3- concentrations, but only in areas with characteristic rich fen bryophytes. This increase was not only due to stronger infiltration into the soil, but also to higher microbial alkalinity generation under anaerobic conditions. In contrast, porewater ANC did not increase in Sphagnum-plots as a result of the ability of Sphagnum spp. to acidify their environment. In both rich and poor fens, flooding-induced P-mobilization remained sufficiently low to safeguard P-limited vegetation. NO3- and NH4+ dynamics showed no considerable changes either. In conclusion, short-term summer inundation with base-rich and nutrient-poor surface water is considered beneficial in the management of non-floating rich fens, and much more effective than winter inundation.

Concepts: Water, Soil, Hydrology, Water cycle, Irrigation, Surface runoff, Groundwater recharge, Alkalinity

2

Ocean acidification is a threat to many marine organisms, especially those that use calcium carbonate to form their shells and skeletons. The ability to accurately measure the carbonate system is the first step in characterizing the drivers behind this threat. Due to logistical realities, regular carbonate system sampling is not possible in many nearshore ocean habitats, particularly in remote, difficult-to-access locations. The ability to autonomously measure the carbonate system in situ relieves many of the logistical challenges; however, it is not always possible to measure the two required carbonate parameters autonomously. Observed relationships between sea surface salinity and total alkalinity can frequently provide a second carbonate parameter thus allowing for the calculation of the entire carbonate system. Here, we assessed the rigor of estimating total alkalinity from salinity at a depth <15 m by routinely sampling water from a pier in southern California for several carbonate system parameters. Carbonate system parameters based on measured values were compared with those based on estimated TA values. Total alkalinity was not predictable from salinity or from a combination of salinity and temperature at this site. However, dissolved inorganic carbon and the calcium carbonate saturation state of these nearshore surface waters could both be estimated within on average 5% of measured values using measured pH and salinity-derived or regionally averaged total alkalinity. Thus we find that the autonomous measurement of pH and salinity can be used to monitor trends in coastal changes in DIC and saturation state and be a useful method for high-frequency, long-term monitoring of ocean acidification.

Concepts: Carbon dioxide, Calcium carbonate, Calcite, Aragonite, Ocean acidification, Chemical oceanography, Alkalinity, Global Ocean Data Analysis Project

2

While the isolated responses of marine phytoplankton to climate warming and to ocean acidification have been studied intensively, studies on the combined effect of both aspects of Global Change are still scarce. Therefore, we performed a mesocosm experiment with a factorial combination of temperature (9 and 15°C) and pCO2 (means: 439 ppm and 1040 ppm) with a natural autumn plankton community from the western Baltic Sea. Temporal trajectories of total biomass and of the biomass of the most important higher taxa followed similar patterns in all treatments. When averaging over the entire time course, phytoplankton biomass decreased with warming and increased with CO2 under warm conditions. The contribution of the two dominant higher phytoplankton taxa (diatoms and cryptophytes) and of the 4 most important species (3 diatoms, 1 cryptophyte) did not respond to the experimental treatments. Taxonomic composition of phytoplankton showed only responses at the level of subdominant and rare species. Phytoplankton cell sizes increased with CO2 addition and decreased with warming. Both effects were stronger for larger species. Warming effects were stronger than CO2 effects and tended to counteract each other. Phytoplankton communities without calcifying species and exposed to short-term variation of CO2 seem to be rather resistant to ocean acidification.

Concepts: Carbon dioxide, Biological oceanography, Ocean, Phytoplankton, Carbonic acid, Global warming, Plankton, Alkalinity

1

Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (εp) in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light (’LL') and high-light (‘HL’) conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures (‘LN’) and nitrogen-replete batches (‘HN’). The observed CO2-dependency of εp remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL εp was consistently lower by about 2.7‰ over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched) bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of εp disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher εp under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent εp under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect εp, thereby illustrating the need to carefully consider prevailing environmental conditions.

Concepts: Algae, Carbon dioxide, Carbon, PH, Dinoflagellate, Carbonic acid, Carbon cycle, Alkalinity