SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: AKT

174

Aberrant signaling through the class I phosphatidylinositol 3-kinase (PI3K)-Akt axis is frequent in human cancer. Here, we show that Beclin 1, an essential autophagy and tumor suppressor protein, is a target of the protein kinase Akt. Expression of a Beclin 1 mutant resistant to Akt-mediated phosphorylation increased autophagy, reduced anchorage-independent growth, and inhibited Akt-driven tumorigenesis. Akt-mediated phosphorylation of Beclin 1 enhanced its interactions with 14-3-3 and vimentin intermediate filament proteins, and vimentin depletion increased autophagy and inhibited Akt-driven transformation. Thus, Akt-mediated phosphorylation of Beclin 1 functions in autophagy inhibition, oncogenesis, and the formation of an autophagy-inhibitory Beclin 1/14-3-3/vimentin intermediate filament complex. These findings have broad implications for understanding the role of Akt signaling and intermediate filament proteins in autophagy and cancer.

Concepts: AKT, Proteins, Cancer, Adenosine triphosphate, Oncology, Tumor suppressor gene, Cytoskeleton, Signal transduction

168

A somatic activating mutation in AKT1, c.49G>A, pGlu17Lys, that results in elevated AKT signaling in mutation-positive cells, is responsible for the mosaic overgrowth condition, Proteus syndrome. ARQ 092 is an allosteric pan-AKT inhibitor under development for treatment in cancer. We tested the efficacy of this drug for suppressing AKT signaling in cells and tissues from patients with Proteus syndrome. ARQ 092 reduced phosphorylation of AKT and downstream targets of AKT in a concentration-dependent manner in as little as two hours. While AKT signaling was suppressed with ARQ 092 treatment, cells retained their ability to respond to growth factor stimulation by increasing pAKT levels proportionally to untreated cells. At concentrations sufficient to decrease AKT signaling, little reduction in cell viability was seen. These results indicate that ARQ 092 can suppress AKT signaling and warrants further development as a therapeutic option for patients with Proteus syndrome.

Concepts: Proteus, DNA, Electrochemistry, AKT, PTEN, Adenosine triphosphate, Suppression of dissent, Suppression

159

Phosphatase and tensin homolog (PTEN) loss or mutation consistently activates the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling pathway, which contributes to the progression and invasiveness of prostate cancer. Furthermore, the PTEN/PI3-K/Akt and Ras/MAPK pathways cooperate to promote the epithelial-mesenchymal transition (EMT) and metastasis initiated from prostate stem/progenitor cells. For these reasons, the PTEN/PI3-K/Akt pathway is considered as an attractive target for both chemoprevention and chemotherapy. Herein we report that eupafolin, a natural compound found in common sage, inhibited proliferation of prostate cancer cells. Protein content analysis indicated that phosphorylation of Akt and its downstream kinases was inhibited by eupafolin treatment. Pull-down assay and in vitro kinase assay results indicated that eupafolin could bind with PI3-K and attenuate its kinase activity. Eupafolin also exhibited tumor suppressive effects in vivo in an athymic nude mouse model. Overall, these results suggested that eupafolin exerts antitumor effects by targeting PI3-K. © 2014 Wiley Periodicals, Inc.

Concepts: AKT, Kinase, Enzyme, Signal transduction, Prostate cancer, Metastasis, Oncology, Cancer

28

Effects of concomitant inhibition of the PI3K/AKT/mTOR pathway and Bcl-2/Bcl-xL (BCL2L1) were examined in human myeloid leukemia cells. Tetracycline-inducible Bcl-2 and Bcl-xL dual knockdown sharply increased PI3K/AKT/mTOR inhibitor lethality. Conversely, inducible knockdown or dominant-negative AKT increased whereas constitutively active AKT reduced lethality of the Bcl-2/Bcl-xL inhibitor ABT-737. Furthermore, PI3K/mTOR inhibitors (e.g., BEZ235, PI-103) synergistically increased ABT-737-mediated cell death in multiple leukemia cell lines and reduced colony-formation in leukemic but not normal CD34+ cells. Notably, increased lethality was observed in 4/6 primary AML specimens. Responding, but not non-responding, samples exhibited basal AKT phosphorylation. PI3K/mTOR inhibitors markedly down-regulated Mcl-1 but increased Bim binding to Bcl-2/Bcl-xL; the latter effect was abrogated by ABT-737. Combined treatment also markedly diminished Bax/Bak binding to Mcl-1, Bcl-2 or Bcl-xL. Bax, Bak, or Bim (BCL2L11) knockdown, or Mcl-1 over-expression significantly diminished regimen-induced apoptosis. Interestingly, pharmacologic inhibition or shRNA knockdown of GSK3α/β significantly attenuated Mcl-1 down-regulation and decreased apoptosis. In a systemic AML xenograft model, dual tet-inducible knockdown of Bcl-2/Bcl-xL sharply increased BEZ235 anti-leukemic effects. In a subcutaneous xenograft model, BEZ235 and ABT-737 co-administration significantly diminished tumor growth, down-regulated Mcl-1, activated caspases, and prolonged survival. Together, these findings suggest that anti-leukemic synergism between PI3K/AKT/mTOR inhibitors and BH3 mimetics involves multiple mechanisms, including Mcl-1 down-regulation, release of Bim from Bcl-2/Bcl-xL as well as Bak and Bax from Mcl-1/Bcl-2/Bcl-xL, and GSK3α/β, culminating in Bax/Bak activation and apoptosis. They also argue that combining PI3K/AKT/mTOR inhibitors with BH3-mimetics warrants attention in AML, particularly in the setting of basal AKT activation and/or addiction.

Concepts: Programmed cell death, AKT, Leukemia, Bcl-2-associated death promoter, BH3 interacting domain death agonist, Caspase, Apoptosis, Bcl-2

28

Asthma is a chronic airway inflammatory disorder which is characterized by reversible airway obstruction, airway hyperresponsiveness and airway inflammation. Oxidative stress has been shown to be strongly associated with most of the features of asthma and leads to accumulation of phosphatidyl inositol (3,4) bis-phosphate {PtdIns(3,4)P2} which is the major substrate for inositol polyphosphate 4 phosphatase (INPP4A). PtdIns(3,4)P2 in turn activates PI3K pathway and contributes to oxidative stress. Thus, there exists a vicious loop between oxidative stress and lipid phosphatase signaling. In this context, we have recently shown that INPP4A, a crucial molecular checkpoint in controlling PI3K-Akt signaling pathway, is downregulated in allergic airway inflammation. Resveratrol, a potent antioxidant found in red wines, has been shown to attenuate asthma features in murine model of allergic airway inflammation (AAI), however the underlying mode of its action was not completely understood. In this study, the effect of resveratrol on mitochondrial dysfunction, PI3K-Akt signaling and inositol polyphosphate 4 phosphatase was studied in murine model of allergic airway inflammation. We observed that resveratrol treatment of allergic mice was found to significantly downregulate oxidative stress and restore mitochondrial function. It also decreased calpain activity and restored the expression of INPP4A in lungs which in turn reduced Akt kinase activity and Akt phosphorylation. These results suggest a novel mechanism of action of resveratrol in attenuating asthma phenotype by downregulating PI3K-Akt pathway via upregulating INPP4A.

Concepts: AKT, Signal transduction, Adenosine triphosphate, Oxidative phosphorylation, Immune system, Inflammation, Asthma, Enzyme

28

Phosphoinositide 3-kinase (PI3K) is a principal regulator of Akt activation and myogenesis; however, the function of PI3K p110β in these processes is not well defined. To address this, we investigated the role of p110β in Akt activation and skeletal muscle cell differentiation. We found that Akt phosphorylation was enhanced in p110β-deficient myoblasts in response to Insulin-like Growth Factor-I (IGF-I), epidermal growth factor, or p110α overexpression, as compared to p110β-sufficient cells. This effect was associated with increased mammalian target of rapamycin complex 2 activation, even in myoblasts deficient in mSin1 and rictor. Conversely, in response to the G-protein-coupled receptor agonist lysophosphatidic acid, Akt phosphorylation was attenuated in p110β-deficient myoblasts. Loss of p110β also enhanced the expression of myogenic markers at the myoblast stage and during the first 48 h of differentiation. These data demonstrate that reductions in p110β are associated with agonist-specific Akt hyperactivation and accelerated myogenesis, thus revealing a negative role for p110β in Akt activation and during myoblast differentiation.

Concepts: Function, Growth factor, Epidermal growth factor, Phosphoinositide 3-kinase, Satellite cell, Gene expression, AKT, Signal transduction

27

Anthraquinone derivatives such as emodin have recently been shown to protect in models of beta amyloid β (Aβ) and tau aggregation-induced cell death. The mechanisms of action possibly involve preconditioning effects, anti-aggregation properties, and/or enhancing the phosphatidylinositol-3-kinase (PI3K)/AKT survival mechanism. We studied several natural (emodin, rhein, and aloin) and synthetic (AQ2S) anthraquinones, to screen for post-treatment therapeutic benefit in two models of neuronal death, namely hydrogen peroxide (H(2)O(2)) and staurosporine (STS)-induced injury. Treatment with emodin, rhein, or aloin failed to reduce H(2)O(2) injury. Moreover, consistent with emodin behaving like a mild toxin, it exacerbated oxidative injury at the highest concentration used (50 μM) in our post-treatment paradigm, and potently inhibited AKT. In contrast, AQ2S was neuroprotective. It reduced H(2)O(2) injury at 50 and 75 μM. In addition, AQ2S potently inhibited staurosporine (STS)-induced injury. The mechanisms of action involve caspase inhibition and AKT activation. However, blockade of AKT signaling with LY294002 failed to abolish AQ2S-mediated protection on the STS assay. This is the first study to report that AQ2S is a new neuroprotective compound and a novel caspase inhibitor.

Concepts: Electrochemistry, Hydrogen, Anthraquinones, Caspase, AKT, Redox, Anthraquinone, Hydrogen peroxide

23

As a critical component in the PI3K/AKT/mTOR pathway, AKT has become an attractive target for therapeutic intervention. ARQ 092 and a next generation AKT inhibitor, ARQ 751 are selective, allosteric, pan-AKT and AKT1-E17K mutant inhibitors that potently inhibit phosphorylation of AKT. Biochemical and cellular analysis showed that ARQ 092 and ARQ 751 inhibited AKT activation not only by dephosphorylating the membrane-associated active form, but also by preventing the inactive form from localizing into plasma membrane. In endometrial PDX models harboring mutant AKT1-E17K and other tumor models with an activated AKT pathway, both compounds exhibited strong anti-tumor activity. Combination studies conducted in in vivo breast tumor models demonstrated that ARQ 092 enhanced tumor inhibition of a common chemotherapeutic agent (paclitaxel). In a large panel of diverse cancer cell lines, ARQ 092 and ARQ 751 inhibited proliferation across multiple tumor types but were most potent in leukemia, breast, endometrial, and colorectal cancer cell lines. Moreover, inhibition by ARQ 092 and ARQ 751 was more prevalent in cancer cell lines containing PIK3CA/PIK3R1 mutations compared to those with wt-PIK3CA/PIK3R1 or PTEN mutations. For both ARQ 092 and ARQ 751, PIK3CA/PIK3R1 and AKT1-E17K mutations can potentially be used as predictive biomarkers for patient selection in clinical studies.

Concepts: Enzyme inhibitor, AKT, Leukemia, Breast cancer, Inhibitor, Oncology, Chemotherapy, Cancer

4

The circadian mechanism underlies daily rhythms in cardiovascular physiology and rhythm disruption is a major risk factor for heart disease and worse outcomes. However, the role of circadian rhythms is generally clinically unappreciated. Clock is a core component of the circadian mechanism and here we examine the role of Clock as a vital determinant of cardiac physiology and pathophysiology in aging. Clock(Δ19/Δ19) mice develop age-dependent increases in heart weight, hypertrophy, dilation, impaired contractility, and reduced myogenic responsiveness. Young Clock(Δ19/Δ19) hearts express dysregulated mRNAs and miRNAs in the PTEN-AKT signal pathways important for cardiac hypertrophy. We found a rhythm in the Pten gene and PTEN protein in WT hearts; rhythmic oscillations are lost in Clock(Δ19/Δ19) hearts. Changes in PTEN are associated with reduced AKT activation and changes in downstream mediators GSK-3β, PRAS40, and S6K1. Cardiomyocyte cultures confirm that Clock regulates the AKT signalling pathways crucial for cardiac hypertrophy. In old Clock(Δ19/Δ19) mice cardiac AKT, GSK3β, S6K1 phosphorylation are increased, consistent with the development of age-dependent cardiac hypertrophy. Lastly, we show that pharmacological modulation of the circadian mechanism with the REV-ERB agonist SR9009 reduces AKT activation and heart weight in old WT mice. Furthermore, SR9009 attenuates cardiac hypertrophy in mice subjected to transverse aortic constriction (TAC), supporting that the circadian mechanism plays an important role in regulating cardiac growth. These findings demonstrate a crucial role for Clock in growth and renewal; disrupting Clock leads to age-dependent cardiomyopathy. Pharmacological targeting of the circadian mechanism provides a new opportunity for treating heart disease.

Concepts: Cardiovascular physiology, PTEN, Rhythm, Avicenna, AKT, Physiology, Circulatory system, Heart

4

Mutations in the human phosphatase and tensin homolog (PTEN) gene cause PTEN hamartoma tumor syndrome (PHTS), which includes cataract development among its diverse clinical pathologies. Currently, it is not known whether cataract formation in PHTS patients is secondary to other systemic problems, or the result of the loss of a critical function of PTEN within the lens. We generated a mouse line with a lens-specific deletion of Pten (PTEN KO) and identified a regulatory function for PTEN in lens ion transport. Specific loss of PTEN in the lens resulted in cataract. PTEN KO lenses exhibited a progressive age-related increase in intracellular hydrostatic pressure, along with, increased intracellular sodium concentrations, and reduced Na+/K+-ATPase activity. Collectively, these defects lead to lens swelling, opacities and ultimately organ rupture. Activation of AKT was highly elevated in PTEN KO lenses compared to WT mice. Additionally, pharmacological inhibition of AKT restored normal Na+/K+-ATPase activity in primary cultured lens cells and reduced lens pressure in intact lenses from PTEN KO animals. These findings identify a direct role for PTEN in the regulation of lens ion transport through an AKT-dependent modulation of Na+/K+-ATPase activity, and provide a new animal model to investigate cataract development in PHTS patients.

Concepts: Mouse, Enzyme, Cancer, Sodium, PTEN, AKT, Hamartoma, DNA