SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: AKT

174

Aberrant signaling through the class I phosphatidylinositol 3-kinase (PI3K)-Akt axis is frequent in human cancer. Here, we show that Beclin 1, an essential autophagy and tumor suppressor protein, is a target of the protein kinase Akt. Expression of a Beclin 1 mutant resistant to Akt-mediated phosphorylation increased autophagy, reduced anchorage-independent growth, and inhibited Akt-driven tumorigenesis. Akt-mediated phosphorylation of Beclin 1 enhanced its interactions with 14-3-3 and vimentin intermediate filament proteins, and vimentin depletion increased autophagy and inhibited Akt-driven transformation. Thus, Akt-mediated phosphorylation of Beclin 1 functions in autophagy inhibition, oncogenesis, and the formation of an autophagy-inhibitory Beclin 1/14-3-3/vimentin intermediate filament complex. These findings have broad implications for understanding the role of Akt signaling and intermediate filament proteins in autophagy and cancer.

Concepts: AKT, Proteins, Cancer, Adenosine triphosphate, Oncology, Tumor suppressor gene, Cytoskeleton, Signal transduction

168

A somatic activating mutation in AKT1, c.49G>A, pGlu17Lys, that results in elevated AKT signaling in mutation-positive cells, is responsible for the mosaic overgrowth condition, Proteus syndrome. ARQ 092 is an allosteric pan-AKT inhibitor under development for treatment in cancer. We tested the efficacy of this drug for suppressing AKT signaling in cells and tissues from patients with Proteus syndrome. ARQ 092 reduced phosphorylation of AKT and downstream targets of AKT in a concentration-dependent manner in as little as two hours. While AKT signaling was suppressed with ARQ 092 treatment, cells retained their ability to respond to growth factor stimulation by increasing pAKT levels proportionally to untreated cells. At concentrations sufficient to decrease AKT signaling, little reduction in cell viability was seen. These results indicate that ARQ 092 can suppress AKT signaling and warrants further development as a therapeutic option for patients with Proteus syndrome.

Concepts: Proteus, DNA, Electrochemistry, AKT, PTEN, Adenosine triphosphate, Suppression of dissent, Suppression

159

Phosphatase and tensin homolog (PTEN) loss or mutation consistently activates the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling pathway, which contributes to the progression and invasiveness of prostate cancer. Furthermore, the PTEN/PI3-K/Akt and Ras/MAPK pathways cooperate to promote the epithelial-mesenchymal transition (EMT) and metastasis initiated from prostate stem/progenitor cells. For these reasons, the PTEN/PI3-K/Akt pathway is considered as an attractive target for both chemoprevention and chemotherapy. Herein we report that eupafolin, a natural compound found in common sage, inhibited proliferation of prostate cancer cells. Protein content analysis indicated that phosphorylation of Akt and its downstream kinases was inhibited by eupafolin treatment. Pull-down assay and in vitro kinase assay results indicated that eupafolin could bind with PI3-K and attenuate its kinase activity. Eupafolin also exhibited tumor suppressive effects in vivo in an athymic nude mouse model. Overall, these results suggested that eupafolin exerts antitumor effects by targeting PI3-K. © 2014 Wiley Periodicals, Inc.

Concepts: AKT, Kinase, Enzyme, Signal transduction, Prostate cancer, Metastasis, Oncology, Cancer

28

Effects of concomitant inhibition of the PI3K/AKT/mTOR pathway and Bcl-2/Bcl-xL (BCL2L1) were examined in human myeloid leukemia cells. Tetracycline-inducible Bcl-2 and Bcl-xL dual knockdown sharply increased PI3K/AKT/mTOR inhibitor lethality. Conversely, inducible knockdown or dominant-negative AKT increased whereas constitutively active AKT reduced lethality of the Bcl-2/Bcl-xL inhibitor ABT-737. Furthermore, PI3K/mTOR inhibitors (e.g., BEZ235, PI-103) synergistically increased ABT-737-mediated cell death in multiple leukemia cell lines and reduced colony-formation in leukemic but not normal CD34+ cells. Notably, increased lethality was observed in 4/6 primary AML specimens. Responding, but not non-responding, samples exhibited basal AKT phosphorylation. PI3K/mTOR inhibitors markedly down-regulated Mcl-1 but increased Bim binding to Bcl-2/Bcl-xL; the latter effect was abrogated by ABT-737. Combined treatment also markedly diminished Bax/Bak binding to Mcl-1, Bcl-2 or Bcl-xL. Bax, Bak, or Bim (BCL2L11) knockdown, or Mcl-1 over-expression significantly diminished regimen-induced apoptosis. Interestingly, pharmacologic inhibition or shRNA knockdown of GSK3α/β significantly attenuated Mcl-1 down-regulation and decreased apoptosis. In a systemic AML xenograft model, dual tet-inducible knockdown of Bcl-2/Bcl-xL sharply increased BEZ235 anti-leukemic effects. In a subcutaneous xenograft model, BEZ235 and ABT-737 co-administration significantly diminished tumor growth, down-regulated Mcl-1, activated caspases, and prolonged survival. Together, these findings suggest that anti-leukemic synergism between PI3K/AKT/mTOR inhibitors and BH3 mimetics involves multiple mechanisms, including Mcl-1 down-regulation, release of Bim from Bcl-2/Bcl-xL as well as Bak and Bax from Mcl-1/Bcl-2/Bcl-xL, and GSK3α/β, culminating in Bax/Bak activation and apoptosis. They also argue that combining PI3K/AKT/mTOR inhibitors with BH3-mimetics warrants attention in AML, particularly in the setting of basal AKT activation and/or addiction.

Concepts: Programmed cell death, AKT, Leukemia, Bcl-2-associated death promoter, BH3 interacting domain death agonist, Caspase, Apoptosis, Bcl-2

28

Asthma is a chronic airway inflammatory disorder which is characterized by reversible airway obstruction, airway hyperresponsiveness and airway inflammation. Oxidative stress has been shown to be strongly associated with most of the features of asthma and leads to accumulation of phosphatidyl inositol (3,4) bis-phosphate {PtdIns(3,4)P2} which is the major substrate for inositol polyphosphate 4 phosphatase (INPP4A). PtdIns(3,4)P2 in turn activates PI3K pathway and contributes to oxidative stress. Thus, there exists a vicious loop between oxidative stress and lipid phosphatase signaling. In this context, we have recently shown that INPP4A, a crucial molecular checkpoint in controlling PI3K-Akt signaling pathway, is downregulated in allergic airway inflammation. Resveratrol, a potent antioxidant found in red wines, has been shown to attenuate asthma features in murine model of allergic airway inflammation (AAI), however the underlying mode of its action was not completely understood. In this study, the effect of resveratrol on mitochondrial dysfunction, PI3K-Akt signaling and inositol polyphosphate 4 phosphatase was studied in murine model of allergic airway inflammation. We observed that resveratrol treatment of allergic mice was found to significantly downregulate oxidative stress and restore mitochondrial function. It also decreased calpain activity and restored the expression of INPP4A in lungs which in turn reduced Akt kinase activity and Akt phosphorylation. These results suggest a novel mechanism of action of resveratrol in attenuating asthma phenotype by downregulating PI3K-Akt pathway via upregulating INPP4A.

Concepts: AKT, Signal transduction, Adenosine triphosphate, Oxidative phosphorylation, Immune system, Inflammation, Asthma, Enzyme

28

Phosphoinositide 3-kinase (PI3K) is a principal regulator of Akt activation and myogenesis; however, the function of PI3K p110β in these processes is not well defined. To address this, we investigated the role of p110β in Akt activation and skeletal muscle cell differentiation. We found that Akt phosphorylation was enhanced in p110β-deficient myoblasts in response to Insulin-like Growth Factor-I (IGF-I), epidermal growth factor, or p110α overexpression, as compared to p110β-sufficient cells. This effect was associated with increased mammalian target of rapamycin complex 2 activation, even in myoblasts deficient in mSin1 and rictor. Conversely, in response to the G-protein-coupled receptor agonist lysophosphatidic acid, Akt phosphorylation was attenuated in p110β-deficient myoblasts. Loss of p110β also enhanced the expression of myogenic markers at the myoblast stage and during the first 48 h of differentiation. These data demonstrate that reductions in p110β are associated with agonist-specific Akt hyperactivation and accelerated myogenesis, thus revealing a negative role for p110β in Akt activation and during myoblast differentiation.

Concepts: Function, Growth factor, Epidermal growth factor, Phosphoinositide 3-kinase, Satellite cell, Gene expression, AKT, Signal transduction

27

Anthraquinone derivatives such as emodin have recently been shown to protect in models of beta amyloid β (Aβ) and tau aggregation-induced cell death. The mechanisms of action possibly involve preconditioning effects, anti-aggregation properties, and/or enhancing the phosphatidylinositol-3-kinase (PI3K)/AKT survival mechanism. We studied several natural (emodin, rhein, and aloin) and synthetic (AQ2S) anthraquinones, to screen for post-treatment therapeutic benefit in two models of neuronal death, namely hydrogen peroxide (H(2)O(2)) and staurosporine (STS)-induced injury. Treatment with emodin, rhein, or aloin failed to reduce H(2)O(2) injury. Moreover, consistent with emodin behaving like a mild toxin, it exacerbated oxidative injury at the highest concentration used (50 μM) in our post-treatment paradigm, and potently inhibited AKT. In contrast, AQ2S was neuroprotective. It reduced H(2)O(2) injury at 50 and 75 μM. In addition, AQ2S potently inhibited staurosporine (STS)-induced injury. The mechanisms of action involve caspase inhibition and AKT activation. However, blockade of AKT signaling with LY294002 failed to abolish AQ2S-mediated protection on the STS assay. This is the first study to report that AQ2S is a new neuroprotective compound and a novel caspase inhibitor.

Concepts: Electrochemistry, Hydrogen, Anthraquinones, Caspase, AKT, Redox, Anthraquinone, Hydrogen peroxide

23

As a critical component in the PI3K/AKT/mTOR pathway, AKT has become an attractive target for therapeutic intervention. ARQ 092 and a next generation AKT inhibitor, ARQ 751 are selective, allosteric, pan-AKT and AKT1-E17K mutant inhibitors that potently inhibit phosphorylation of AKT. Biochemical and cellular analysis showed that ARQ 092 and ARQ 751 inhibited AKT activation not only by dephosphorylating the membrane-associated active form, but also by preventing the inactive form from localizing into plasma membrane. In endometrial PDX models harboring mutant AKT1-E17K and other tumor models with an activated AKT pathway, both compounds exhibited strong anti-tumor activity. Combination studies conducted in in vivo breast tumor models demonstrated that ARQ 092 enhanced tumor inhibition of a common chemotherapeutic agent (paclitaxel). In a large panel of diverse cancer cell lines, ARQ 092 and ARQ 751 inhibited proliferation across multiple tumor types but were most potent in leukemia, breast, endometrial, and colorectal cancer cell lines. Moreover, inhibition by ARQ 092 and ARQ 751 was more prevalent in cancer cell lines containing PIK3CA/PIK3R1 mutations compared to those with wt-PIK3CA/PIK3R1 or PTEN mutations. For both ARQ 092 and ARQ 751, PIK3CA/PIK3R1 and AKT1-E17K mutations can potentially be used as predictive biomarkers for patient selection in clinical studies.

Concepts: Enzyme inhibitor, AKT, Leukemia, Breast cancer, Inhibitor, Oncology, Chemotherapy, Cancer

12

Phosphofructokinase 1 (PFK1) plays a critical role in glycolysis; however, its role and regulation in tumorigenesis are not well understood. Here, we demonstrate that PFK1 platelet isoform (PFKP) is the predominant PFK1 isoform in human glioblastoma cells and its expression correlates with total PFK activity. We show that PFKP is overexpressed in human glioblastoma specimens due to an increased stability, which is induced by AKT activation resulting from phosphatase and tensin homologue (PTEN) loss and EGFR-dependent PI3K activation. AKT binds to and phosphorylates PFKP at S386, and this phosphorylation inhibits the binding of TRIM21 E3 ligase to PFKP and the subsequent TRIM21-mediated polyubiquitylation and degradation of PFKP. PFKP S386 phosphorylation increases PFKP expression and promotes aerobic glycolysis, cell proliferation, and brain tumor growth. In addition, S386 phosphorylation in human glioblastoma specimens positively correlates with PFKP expression, AKT S473 phosphorylation, and poor prognosis. These findings underscore the potential role and regulation of PFKP in human glioblastoma development.Phosphofructokinase 1 (PFK1) plays a critical role in glycolysis. Here the authors show that PFK1 platelet isoform is upregulated in Glioblastoma and is required for tumor growth mechanistically, such upregulation is due to an increased stability induced by AKT activation via phosphorylation on residue S386.

Concepts: Oxidative phosphorylation, Gene expression, PTEN, AKT, Glycolysis, Adenosine triphosphate, Brain tumor, Phosphofructokinase 1

7

The neural crest is a dynamic progenitor cell population that arises at the border of neural and non-neural ectoderm. The inductive roles of FGF, Wnt, and BMP at the neural plate border are well established, but the signals required for subsequent neural crest development remain poorly characterized. Here, we conducted a screen in primary zebrafish embryo cultures for chemicals that disrupt neural crest development, as read out by crestin:EGFP expression. We found that the natural product caffeic acid phenethyl ester (CAPE) disrupts neural crest gene expression, migration, and melanocytic differentiation by reducing Sox10 activity. CAPE inhibits FGF-stimulated PI3K/Akt signaling, and neural crest defects in CAPE-treated embryos are suppressed by constitutively active Akt1. Inhibition of Akt activity by constitutively active PTEN similarly decreases crestin expression and Sox10 activity. Our study has identified Akt as a novel intracellular pathway required for neural crest differentiation.

Concepts: AKT, Gene, Cell, Embryo, DNA, Neural crest, Gene expression, Developmental biology