Discover the most talked about and latest scientific content & concepts.

Concept: Agarwood


Agarwood is the fragrant resin-infused wood derived from the wounded trees of Aquilaria species. It is a valuable non-timber forest product used in fragrances and as medicine. Reforestation for Aquilaria trees in combination with artificial agarwood-inducing methods serves as a way to supply agarwood and conserve of wild Aquilaria stock. However, the existing agarwood-inducing methods produce poor-quality agarwood at low yield. Our study evaluated a novel technique for producing agarwood in cultivated Aquilaria trees, called the whole-tree agarwood-inducing technique (Agar-Wit). Ten different agarwood inducers were used for comparison of Agar-Wit with three existing agarwood-inducing methods. For Aquilaria trees treated with these ten inducers, agarwood formed and spread throughout the entire tree from the transfusion point in the trunk to the roots and branches of the whole tree. Agarwood yield per tree reached 2,444.83 to 5,860.74 g, which is 4 to 28 times higher than that by the existing agarwood-inducing methods. Furthermore, this agarwood derived from Agar-Wit induction was found to have a higher quality compared with the existing methods, and similar to that of wild agarwood. This indicates Agar-Wit may have commercial potential. Induction of cultivated agarwood using this method could satisfy the significant demand for agarwood, while conserving and protecting the remaining wild Aquilaria trees.

Concepts: Forestry, Tree, Wood, Branch, Trunk, Agarwood, Aquilaria, Aquilaria sinensis


Agarwood is the resinous material harvested from threatened Aquilaria species. We investigated how many protonated 2-(2-phenylethyl)chromone ions were sufficient to make an accurate identification of agarwood. Analysis of 125 reference samples was carried out by direct analysis in real time time-of-flight mass spectrometry (DART-TOFMS). The identification criteria developed were applied to commercial samples.

Concepts: Mass spectrometry, Calculus, Ion source, Time-of-flight, Agarwood, Aquilaria, Aquilaria malaccensis


Agarwood is a resinous material formed in wounded Aquilaria sinensis in China, which is widely used as an effective traditional Chinese medicine (TCM). This study is aimed to use gas chromatography-mass spectrometry combined with chemometric methods to create reliable criteria for accurate identification of natural agarwood and artificial agarwood, as well as for quality evaluation of artificial agarwood. Natural agarwood and artificial agarwood (stimulated by formic acid or formic acid plus fungal inoculation) were used as standards and controls for the gas chromatography-mass spectrometry (GC-MS) and multivariate analysis. The identification criteria developed were applied to commercial agarwood. A reliable criteria including correlation coefficient of GC-MS fingerprint of natural agarwood and 22 markers of metabolism in natural and artificial agarwood was constructed. Compared with chemically stimulated agarwood (formic acid) and in terms of the 22 markers, artificial agarwood obtained by formic acid stimulation and fungal inoculation were much closer to natural agarwood. The study demonstrates that the chemical components of artificial agarwood obtained by comprehensive stimulated method (formic acid plus fungal inoculation) are much closer to the natural agarwood than those obtained by chemically stimulated method (formic acid), as times goes by. A reliable criteria containing correlation coefficient of GC-MS fingerprint of natural agarwood and 22 metabolism markers can be used to evaluate the quality of the agarwood. As an application case, three samples were identified as natural agarwood from the 25 commercial agarwood by using the evaluation method.

Concepts: Oxygen, Mass spectrometry, Evaluation, Chromatography, Chemical compound, Agarwood, Aquilaria, Aquilaria sinensis


As widely recognized, agarwood formation in Aquilaria trees is induced by external wounding. Because agarwood usually harbors specific microbes, the function of microbes in agarwood formation has been debated for almost a century. In this study, two wounding methods, the burning-chisel-drilling method (BCD) and the whole-tree agarwood-inducing method (Agar-Wit), were used under the non-contamination of environmental microorganisms. After pyrosequencing the small rRNA subunits of the wounds induced by the BCD and Agar-Wit, no substantial variation was observed either in fungal and bacterial enrichment and diversity or in the relative abundances of taxa. By contrast, significant variations in fungal and bacterial communities were detected following the partial tree pruning (PTP)-wounding. The wound-induced sesquiterpene biosynthesis and vessel-occlusion formation, however, were found to be similar in all types of wounded trunks. We thus infer that wounding in the absence of variations in microbial communities may induce agarwood formation. This result does not support the long-standing notion that agarwood formation depends on microbes.

Concepts: Archaea, Bacteria, Microbiology, Eukaryote, Biotechnology, Microorganism, Agarwood, Aquilaria


Aquilaria crassna has been used in traditional Asian medicine to treat vomiting, rheumatism, asthma, and cough. Furthermore, earlier studies from our laboratory have revealed that the essential oil extract from agarwood inhibited colorectal carcinoma cells. Despite of the wide range of ethno-pharmacological uses of agarwood, its toxicity has not been previously evaluated through systematic toxicological studies. Therefore, the potential safety of essential oil extract and its in vivo anti-tumor activity had been investigated.

Concepts: Cancer, Poison, Traditional Chinese medicine, Essential oil, Oil, Oils, Agarwood, Aquilaria


Agarwood is a priceless non-timber forest product from Aquilaria species belonging to the Thymelaeaceae family. As a result of a defence mechanism to fend off pathogens, Aquilaria species develop agarwood or resin which can be used for incense, perfumery, and traditional medicines. Evidences from ethnopharmacological practices showed that Aquilaria spp. have been traditionally used in the Ayurvedic practice and Chinese medicine to treat various diseases particularly the inflammatory-associated diseases. There have been no reports on traditional use of agarwood towards cancer treatment. However, this is most probably due to the fact that cancer nomenclature is used in modern medicine to describe the diseases associated with unregulated cell growth in which inflammation and body pain are involved.

Concepts: Immune system, Medicine, Cancer, Ayurveda, Alternative medicine, Essential oil, Incense, Agarwood


2-(2-Phenylethyl)chromones are the main compounds responsible for the quality of agarwood, which is widely used in traditional medicines, incenses and perfumes. H2O2and NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) mediate diverse physiological and biochemical processes in environmental stress responses. However, little is known about the function of H2O2and NADPH oxidases in 2-(2-phenylethyl)chromones accumulation. In this study, we found that salt stress induced a transient increase in content of H2O2and 2-(2-phenylethyl)chromones accumulation in Aquilaria sinensis calli. Exogenous H2O2remarkably decreased the production of 2-(2-phenylethyl)chromones, while dimethylthiourea (DMTU), a scavenger of H2O2, significantly increased 2-(2-phenylethyl)chromones accumulation in salt treated calli. Three new H2O2-generating genes, named AsRbohA-C, were isolated and characterized from A. sinensis. Salt stress also induced a transient increase in AsRbohA-C expression and NADPH oxidase activity. Furthermore, exogenous H2O2increased AsRbohA-C expression and NADPH oxidase activity, while DMTU inhibited AsRbohA-C expression and NADPH oxidase activity under salt stress. Moreover, diphenylene iodonium (DPI), the inhibitor of NADPH oxidases, reduced AsRbohA-C expression and NADPH oxidase activity, but significantly induced 2-(2-phenylethyl)chromones accumulation during salt stress. These results clearly demonstrated the central role of H2O2and NADPH oxidases in regulation of salt-induced 2-(2-phenylethyl)chromones accumulation in A. sinensis calli.

Concepts: DNA, Redox, NADPH oxidase, Oxidase, Stress, Agarwood, Aquilaria, Aquilaria sinensis


Agarwood (jinkoh in Japanese) is a resinous wood from Aquilaria species of the family Thymelaeaceae and has been used as incense and in traditional medicines. Characteristic chromone derivatives such as agarotetrol have been isolated from agarwood. In previous study, we isolated two new 2-(2-phenylethyl)chromones together with six known compounds from MeOH extract of agarwood. Further chemical investigation of the MeOH extract led to isolation of eighteen 2-(2-phenylethyl)chromones, including three new 5,6,7,8-tetrahydroxy-5,6,7,8-tetrahydrochromones with stereochemistry enantiomeric to agarotetrol-type, viz. (5R,6S,7S,8R)-2-[2-(3'-hydroxy-4'-methoxyphenyl)ethyl]-5,6,7,8-tetrahydroxy-5,6,7,8-tetrahydrochromone (2), (5R,6S,7S,8R)-2-[2-(4'-methoxyphenyl)ethyl]-5,6,7,8-tetrahydroxy-5,6,7,8-tetrahydrochromone (6), and (5R,6S,7S,8R)-2-[2-(4'-hydroxy-3'- methoxyphenyl)ethyl]-5,6,7,8-tetrahydroxy-5,6,7,8-tetrahydrochromone (13). The absolute configurations of the new compounds were determined by exciton chirality method. All isolated compounds were tested for their phosphodiesterase (PDE) 3A inhibitory activity by fluorescence polarization method. Compounds 8, 12-15, 21-24 showed moderate PDE 3A inhibitory activity.

Concepts: Absolute, Stereochemistry, Enantiomer, Chirality, Essential oil, Incense, Agarwood, Aquilaria


Six previously undescribed uncommon ester-bonded dimeric compounds (aquilacrassnins A-F) containing a sesquiterpenoid and a 5,6,7,8-tetrahydroxy-2-(2-phenylethyl)-5,6,7,8-tetrahydro -4H-chromone units were isolated from the EtOAc extract of agarwood originating from Aquilaria crassna. Their structures were elucidated by spectroscopic (NMR, UV, IR, MS, and ECD) methods. All the compounds were tested for AChE inhibitory activity and cytotoxicity against K562, BEL-7402, SGC-7901, Hela, and A549 tumor cell lines. The results showed that aquilacrassnin A, B, and E exhibited weak cytotoxicity against the five tested cell lines, whereas all the compounds were inactive against AChE.

Concepts: Cell, Cancer, Cell culture, Tumor, HeLa, Infrared, Agarwood, Aquilaria


Four new and five known sesquiterpenoids were isolated from the agarwood of Aquilaria malaccensis. Aquilanols A and B (1 and 2) have an unprecedented macrocyclic humulene structure with a bicyclic 7/10 ring system. Compound 2 was obtained as a scalemic mixture that was resolved by HPLC analysis using a chiral column. Their structures were deduced based on spectroscopic data analysis, and the absolute configurations were unambiguously determined by X-ray crystallographic data and ECD spectroscopic analysis. A putative biosynthetic pathway of these sesquiterpenoids is proposed.

Concepts: X-ray crystallography, Agarwood, Aquilaria, Aquilaria malaccensis