Discover the most talked about and latest scientific content & concepts.

Concept: Adsorption


Wettability is the affinity of a liquid for a solid surface. For energetic reasons, macroscopic drops of liquid form nearly spherical caps. The degree of wettability is then captured by the contact angle where the liquid-vapor interface meets the solid-liquid interface. As droplet volumes shrink to the scale of attoliters, however, surface interactions become significant, and droplets assume distorted shapes. In this regime, the contact angle becomes ambiguous, and a scalable metric for quantifying wettability is needed, especially given the emergence of technologies exploiting liquid-solid interactions at the nanoscale. Here we combine nanoscale experiments with molecular-level simulation to study the breakdown of spherical droplet shapes at small length scales. We demonstrate how measured droplet topographies increasingly reveal non-spherical features as volumes shrink. Ultimately, the nanoscale droplets flatten out to form layer-like molecular assemblies at the solid surface. For the lack of an identifiable contact angle at small scales, we introduce a droplet’s adsorption energy density as a new metric for a liquid’s affinity for a surface. We discover that extrapolating the macroscopic idealization of a drop to the nanoscale, though it does not geometrically resemble a realistic droplet, can nonetheless recover its adsorption energy if line tension is included.

Concepts: Fundamental physics concepts, Density, Adsorption, Liquid, Wetting, Surface tension, Drop, Angle


We report the template-free, low-temperature synthesis of a stable, amorphous, and anhydrous magnesium carbonate nanostructure with pore sizes below 6 nm and a specific surface area of ∼ 800 m(2) g(-1), substantially surpassing the surface area of all previously described alkali earth metal carbonates. The moisture sorption of the novel nanostructure is featured by a unique set of properties including an adsorption capacity ∼50% larger than that of the hygroscopic zeolite-Y at low relative humidities and with the ability to retain more than 75% of the adsorbed water when the humidity is decreased from 95% to 5% at room temperature. These properties can be regenerated by heat treatment at temperatures below 100°C.The structure is foreseen to become useful in applications such as humidity control, as industrial adsorbents and filters, in drug delivery and catalysis.

Concepts: Chemical reaction, Magnesium, Heat, Adsorption, Solid, Specific surface area, Surface chemistry, BET theory


Recycling rare earth elements (REEs) used in advanced materials such as Nd magnets is important for the efficient use of REE resources when the supply of several REEs is limited. In this work, the feasibility of using salmon milt for REE recovery and separation was examined, along with the identification of the binding site of REEs in salmon milt. Results showed that (i) salmon milt has a sufficiently high affinity to adsorb REEs and (ii) the adsorption capacity of the milt is 1.04 mEq/g, which is comparable with that of commercial cation exchange resin. Heavier REEs have higher affinity for milt. A comparison of stability constants and adsorption patterns of REEs discussed in the literature suggests that the phosphate is responsible for the adsorption of REE in milt. The results were supported by dysprosium (Dy) and lutetium (Lu) LIII-edge extended x-ray absorption fine structure (EXAFS) spectroscopy. The REE-P shell was identified for the second neighboring atom, which shows the importance of the phosphate site as REE binding sites. The comparison of REE adsorption pattern and EXAFS results between the milt system and other adsorbent systems (cellulose phosphate, Ln-resin, bacteria, and DNA-filter hybrid) revealed that the coordination number of phosphate is correlated with the slope of the REE pattern. The separation column loaded with milt was tested to separate REE for the practical use of salmon milt for the recovery and separation of REE. However, water did not flow through the column possibly because of the hydrophobicity of the milt. Thus, sequential adsorption-desorption approach using a batch-type method was applied for the separation of REE. As an example of the practical applications of REE separation, Nd and Fe(III) were successfully separated from a synthetic solution of Nd magnet waste by a batch-type method using salmon milt.

Concepts: DNA, Adsorption, Materials science, Rare earth element, Lutetium, Lanthanide, Ytterbium, Dysprosium


In order to endow environmental protection features to dentifrice, hydroxyapatite (HA) was added to ordinary dentifrice. The effects on dentinal tubule occlusion and surface mineralization were compared after brushing dentine discs with dentifrice with or without HA. The two types of dentifrice were then added to 100 µg/ml of hexavalent chromium cation (Cr(6+)) solution in order to evaluate their capacities of adsorbing Cr(6+) from water. Our results showed that the dentifrice containing HA was significantly better than the ordinary dentifrice in occluding the dentinal tubules with a plugging rate greater than 90%. Moreover, the effect of the HA dentifrice was persistent and energy-dispersive spectrometer (EDS) revealed that the atomic percentages of calcium and phosphorus on the surface of dentine discs increased significantly. Adding HA to ordinary dentifrice significantly enhanced the ability of dentifrice to adsorb Cr(6+) from water with the removal rate up to 52.36%. In addition, the sorption was stable. Our study suggests that HA can be added to ordinary dentifrice to obtain dentifrice that has both relieving dentin hypersensitivity benefits and also helps to control environmental pollution.

Concepts: Chemistry, Atom, Adsorption, Pollution, Dentin, Hydroxylapatite, Dentine hypersensitivity, Environmentalism


The aim of this study was to develop an immediate-release pellet formulation with improved drug dissolution and adsorption. Carbamazepine, a poorly water-soluble drug, was adsorbed into mesoporous silica (SBA-15-CBZ) via a wetness impregnation method and then processed by extrusion/spheronization into pellets. Physicochemical characterization of the preparation was carried out by scanning electron microscopy, transmission electron microscopy, nitrogen adsorption, small-angle and wide-angle x-ray diffraction, and differential scanning calorimetry. Flowability and wettability of the drug-loaded silica powder were evaluated by bulk and tapped density and by the angle of repose and contact angle, respectively. The drug-loaded silica powder was formulated into pellets to improve flowability.

Concepts: Electron, X-ray, Adsorption, Wetting, Materials science, Scientific techniques, Transmission electron microscopy, Scanning electron microscope


A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and (29)Si and (27)Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin-Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

Concepts: X-ray, Concentration, Chemistry, Nuclear magnetic resonance, Magnetic resonance imaging, Adsorption, Scientific techniques, Fourier transform


Lipases are promising enzymes that catalyze the hydrolysis of triacylglycerol ester bonds at the oil/water interface. Apart from allowing biocatalyst reuse, immobilization can also affect enzyme structure consequently influencing its activity, selectivity, and stability. The lipase from Penicillium sp. section Gracilenta (CBMAI 1583) was successfully immobilized on supports bearing butyl, phenyl, octyl, octadecyl, and divinylbenzyl hydrophobic moieties wherein lipases were adsorbed through the highly hydrophobic opened active site. The highest activity in aqueous medium was observed for the enzyme adsorbed on octyl support, with a 150% hyperactivation regarding the soluble enzyme activity, and the highest adsorption strength was verified with the most hydrophobic support (octadecyl Sepabeads), requiring 5% Triton X-100 to desorb the enzyme from the support. Most of the derivatives presented improved properties such as higher stability to pH, temperature, and organic solvents than the covalently immobilized CNBr derivative (prepared under very mild experimental conditions and thus a reference mimicking free-enzyme behavior). A 30.8- and 46.3-fold thermostabilization was achieved in aqueous medium, respectively, by the octyl Sepharose and Toyopearl butyl derivatives at 60 °C, in relation to the CNBr derivative. The octyl- and phenyl-agarose derivatives retained 50% activity after four and seven cycles of p-nitrophenyl palmitate hydrolysis, respectively. Different derivatives exhibited different properties regarding their properties for fish oil hydrolysis in aqueous medium and ethanolysis in anhydrous medium. The most active derivative in ethanolysis of fish oil was the enzyme adsorbed on a surface covered by divinylbenzyl moieties and it was 50-fold more active than the enzyme adsorbed on octadecyl support. Despite having identical mechanisms of immobilization, different hydrophobic supports seem to promote different shapes of the adsorbed open active site of the lipase and hence different functional properties.

Concepts: Enzyme, Catalysis, Starch, Adsorption, PH, Lipase, Enzymes, Immobilized enzyme


The sorption of Ni(II) on a calcareous aridisol (CA) soil, one of the major soil types in northwestern China, was investigated using batch and extended X-ray absorption fine structure (EXAFS) approaches in a 0.01 mol/L NaClO4 solution at different pH values (6.0-10.0), temperatures (25-60 °C) and contact times (2-15 days). Under alkaline conditions, EXAFS analysis showed that the interatomic distances between Ni and O atoms (RNi-O) were approximately 2.04 Å with a typical coordination number (CN) of ~6.0 O atoms in the contact time range from 2 to 15 days. The RNi-Ni (~3.07 Å) suggested that the structure of the Ni(II) adsorbed on the CA soil was basically the same as that of Ni(OH)2(s), while the Ni-Al shell (RNi-Al ~3.16 Å) gradually formed and grew with the increasing contact time. Under weakly acidic conditions, the sorption mechanism of Ni(II) on the CA soil possibly included at least two processes: (i) a fast accumulation dominated by ion exchange and surface complexation and (ii) the formation of a Ni-Al LDH phase over the long term. A high temperature is beneficial to the fixation of Ni(II) on the CA soil and the formation of a Ni-Al LDH.

Concepts: Time, Electron, Hydrogen, Chemistry, Adsorption, PH, Term, Soil classification


In ecotoxicology, it is continuously questioned whether (nano)particle exposure results in particle uptake and subsequent biodistribution or if particles adsorb to the epithelial layer only. To contribute to answering this question, we investigated different uptake routes in zebrafish embryos and how they affect particle uptake into organs and within whole organisms. This is addressed by exposing three different life stages of the zebrafish embryo in order to cover the following exposure routes: via chorion and dermal exposure; dermal exposure; oral and dermal exposure. How different nanoparticle sizes affect uptake routes was assessed by using polystyrene particles of 25, 50, 250 and 700nm. In our experimental study, we showed that particle uptake in biota is restricted to oral exposure, whereas the dermal route resulted in adsorption to the epidermis and gills only. Ingestion followed by biodistribution was observed for the tested particles of 25 and 50nm. The particles spread through the body and eventually accumulated in specific organs and tissues such as the eyes. Particles larger than 50nm were predominantly adsorbed onto the intestinal tract and outer epidermis of zebrafish embryos. Embryos exposed to particles via both epidermis and intestine showed highest uptake and eventually accumulated particles in the eye, whereas uptake of particles via the chorion and epidermis resulted in marginal uptake. Organ uptake and internal distribution should be monitored more closely to provide more in depth information of the toxicity of particles.

Concepts: Epithelium, Stomach, Tissues, Adsorption, Eye, Skin, Epidermis, Activated carbon


Magnesium silicate as a high-performance adsorption material has attracted increasing attention for the removal of organic dye pollution. Here, we prepared a series of magnesium silicate hydrates (MSH) in a hydrothermal route, and carefully investigated the corresponding adsorption behavior towards methylene blue (MB) as well as the effect of surface charge on adsorption capacity. The results show that surface charge plays a key role in the adsorption performance of MSH for MB, a negative surface charge density follows the increase of Si/Mg feeding ratio from 1.00 to 1.75, and furthermore the higher negative charge favors the improvement of the adsorption capacity. Among four investigated samples (MSH = 1.00, 1.25, 1.50, and 1.75), MSH-1.75 has the highest negative surface charge and shows the largest adsorption capacity for MB. For example, the equilibrium adsorption quantity is 307 mg·g−1 for MSH-1.75, which is 35% higher than that of 227 mg·g−1 for MSH-1.00. Besides, for MSH-1.75, the as-prepared sample with negative charge exhibits ca. 36% higher adsorption quantity compared to the sample at the zero point of charge (pHZPC). Furthermore, magnesium silicate hydrate material with Si/Mg feeding ratio = 1.75 demonstrates the promising removal efficiency of beyond 98% for methylene blue in 10 min, and the maximum adsorption capacity of 374 mg·g−1 calculated from the Langmuir isotherm model.

Concepts: Electric charge, Fundamental physics concepts, Density, Electrostatics, Adsorption, Surface chemistry, Charge density, Current density